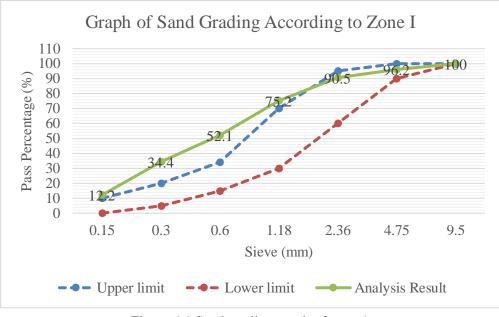
CHAPTER IV RESULT AND DISCUSSION

4.1 Result of Research


4.1.1 Sand Testing Result

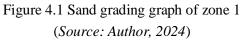

1) Sand Sieve Analysis

Table 4.1 Sand	l Sieve Analysis
----------------	------------------

Siev	'e		Retained on the sieve			%Cumulative	
No	mm	Tray Weight (gr)	Tray + sand (gr)	Retained Sand (W1) (gr)	% Retained Sand	Retained (A)	Pass (100 -A)
3/8 "	9.5	472	1472	0	0.00	0.00	100
No. 4	4.75	472	510	38	3.80	3.80	96.2
No. 8	2.36	332	389	57	5.70	9.50	90.5
No. 16	1.18	306	459	153	15.30	24.80	75.2
No. 30	0.60	350	581	231	23.10	47.90	52.1
No. 50	0.30	293	470	177	17.70	65.60	34.4
No. 100	0.15	284	506	222	22.20	87.80	12.2
Pan	0	372	492	120			
Amou	ınt			998		239.40	
Finen Modu		∑% Reta	ained Cumula	ative/100		2.394	

⁽Source: Author, 2024)

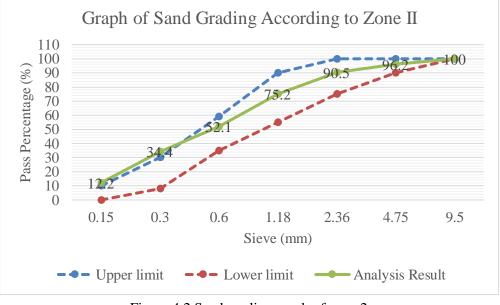


Figure 4.2 Sand grading graph of zone 2 (Source: Author, 2024)

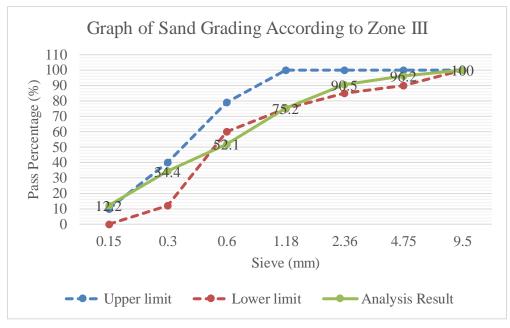
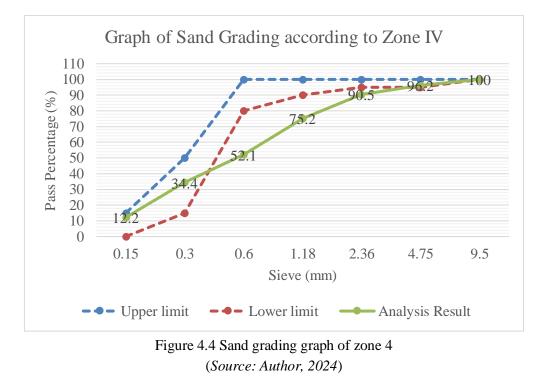



Figure 4.3 Sand grading graph of zone 3 (Source: Author, 2024)

From the results of the sand sieve analysis, it was concluded that the sand used in the study was in zone 2.

2) Volume Weight of Sand Analysis

Table 4.2 Sand volume	weight test result data
-----------------------	-------------------------

Test	Without	Stabbed	With Stabbed	
1081	1	2	1	2
Weight of Cylinder	3728	3728	3728	3728
D/H Cylinder (cm)	15.5/15	15.5/15	15.5/15	15.5/15
Volume of Cylinder (cm ³)	2739	2739	2739	2739
Weight of Cylinder + Sand	8521	8536	8784	8806
Sand	4793	4808	5056	5078
Sand / Volume (gr/cm ³)	1.750	1.755	1.846	1.854
Mean	1.753		1.8	350

(Source: Author, 2024)

Calculation Without stabbed:

Volume Weight of Sand = $\frac{(\text{Cylinder Weight+ Sand}) - (\text{Cylinder Weight})}{\text{Volume Cilinder}}$ Volume Weight of Sand 1 = $\frac{(8521) - (3728)}{2739} = 1.750 \text{ g/cm}^3$ Volume Weight of Sand 2 = $\frac{(8536) - (3728)}{2739} = 1.765 \text{ g/cm}^3$ Calculation With stabbed:
Volume Weight of Sand = $\frac{(\text{Cylinder Weight+ Sand}) - (\text{Cylinder Weight})}{\text{Volume Cilinder}}$ Volume Weight of Sand 1 = $\frac{(8784) - (3728)}{2739} = 1.856 \text{ g/cm}^3$ Volume Weight of Sand 2 = $\frac{(8806) - (3728)}{2739} = 1.854 \text{ g/cm}^3$

3) Sand Moisture Analysis

Table 4.3 Sand moisture analysis result

Test No.		1	2
Weight of Tray	gram	546	148
Tray + Sand	gram	1046	648
Sand Weight (W1)	gram	500	500
Tray Weight + Sand Oven	gram	1023	625
Sand Oven Weight (W2)	gram	477	477
Sand Moisture (%)	%	4.82	4.82
Mean (%)	%	4.8	32

(Source: Author, 2024)

Calculation:

Sand Moisture = Weight of Sand - Weight of Oven Sand
Weight of Oven Sand
Sand Moisture 1 = $\frac{500 - 477}{477} \times 100 \% = 4.82 \%$
Sand Moisture $2 = \frac{500 - 477}{477} \times 100 \% = 4.82 \%$

4) Sand Absorption Analysis

Table 4.4 Res	sult of sand	absorption	analysis

Test No.	1	2
Weight of Tray	35	34
Tray + Sand SSD	535	534
Weight of Sand SSD (W1)	500	500
Container + Sand Oven	531	530
Weight of Sand Oven (W2)	496	496
Absorption (%)	0.81	0.81
Mean (%)	0.81	

(Source: Author, 2024)

Calculation:

Sand Absorption =	Sand SSD Weight - Sand Oven Weight
Sand Absorption -	Sand Oven Weight
Sand Absorption 1	$=\frac{500-496}{496} \times 100 \% = 0.81 \%$

Sand Absorption $2 = \frac{500 - 496}{496} \times 100 \% = 0.81 \%$

5) Sand Relative Density Analysis

Table 4.5 Result of sand relative density Analysis

Test No.	1	2
Pycnometer Weight (W1)	373	381
Weight of Sand SSD (W2)	500	500
Sand SSD + Pycnometer (W3)	873	881
Pycnometer + Sand SSD + Water (W4)	1684	1693
Pycnometer + Water (W5)	1368	1376
Surface Dry Saturated Relative Density	2.72	2.73
Mean	2.72	

(Source: Author, 2024)

Calculation:

Sand Relative Density =
$$\frac{W3 - W1}{(W5+W2) - W4}$$

Sand Relative Density $1 = \frac{873 - 373}{(1368 + 500) - 1684} = 2.72 \text{ Kg/L}$
Sand Relative Density $2 = \frac{881 - 381}{(1376 + 500) - 1693} = 2.73 \text{ Kg/L}$

6) Bulking of Sand

Table 4.6 Result data of sand bulking

Test No.	1	2
Sand Volume 1 (V1)	375	375
Sand Volume in Water (V2)	300	315
Bulking (%)	25	19
Mean	22	

(Source: Author, 2024)

Calculation:

Bulking of Sand = $\frac{V1-V2}{V2} \times 100\%$ Bulking of Sand 1 = $\frac{375 - 300}{300} \times 100\% = 25\%$ Bulking of Sand 2 = $\frac{375 - 315}{315} \times 100\% = 19\%$

7) Analysis of Sand Cleanliness Against Mud by Wet Method

Table 4.7 Analysis of Sand Cleanliness Against Mud by Wet Method

Test No.	1	2
Height of Mud (mm) (H1)	1	1
Height of Sand (mm) (H2)	124	117
Mud Content %	0.81	0.85
Mean	0.83	

(Source: Author, 2024) Calculation:

Sand Cleanliness Against Mud = $\frac{\text{H1}}{\text{H2}} \times 100\%$ Sand Cleanliness Against Mud 1 = $\frac{1}{124} \times 100\%$ = 0.81 % Sand Cleanliness Against Mud 2 = $\frac{1}{117} \times 100\%$ = 0.85 %

 Analysis of Sand Cleanliness against Material Finer than Sieve No. 200 by Dry Method

2	\mathcal{O}		
Test No.	1	2	
Tray Weight	91	187	
Dry Sand Weight (W1)	500	500	
Tray + Dry Sand	570	664	
Net Dry Sand Weight (W2)	479	477	
Mud content%	4.2	4.6	
Mean	4.4		

Table 4.8 Result data of analysis of sand cleanliness against Mud

(Source: Author, 2024)

Calculation:

Cleanliness against Mud = $\frac{W1-W2}{W1} \times 100\%$ Cleanliness against Mud 1 = $\frac{500 - 479}{W1} \times 100\% = 4.2\%$ Cleanliness against Mud 2 = $\frac{500 - 479}{W1} \times 100\% = 4.6\%$

	Table 4.9 Recapitulation of Analysis Result						
No.	Testing	Testing Result	Specification	Standard			
1	Fineness Modulus	2.39	2.0 to 3.3	ACI E1-07			
2	Grading Zone	Zone 2	Zone 2	SNI 03-2834-2000			
3	Volume Weight	1.753	1.2 to 1.76	ACI E1-07			
4	Relative density	2.72	2.3 to 2.9	ACIEI-07			
5	Moisture	4.82	-	SNI 03-1971-1990			
6	Absorption	0.81 %	0.5 to 4 %				
7	Cleanness from material finer than sieve No. 200	4.4 %	Max. 5%	ACI E1-07			

9) Recapitulation of Analysis Result

(Source: Author, 2024)

From the sand material testing, it can be concluded that the characteristics of sand meet the requirements.

4.1.2 Crushed Gravel Testing Results

 Gravel Sieve Analysis Weight of Gravel: 15000 grams

Table 4.10 Result data of gravel sieve analysis

Sieve		Retained	on the Sie	ve	% Cumul	ative
No.	mm	Tray + Gravel	Gravel	(%) Retained	Retained	Pass
		(gr)	(gr)		(%)	(%)
3/2"	38.1	0	0	0	0	100
3/4"	19	5329	4793	31.95	31.95	68.05
3/8"	9.5	10252	9716	64.77	96.73	3.27
4	4.75	904	368	2.45	99.18	0.82
8	2.36	544	8	0.05	99.23	0.77
16	1.18	540	4	0.03	99.26	0.74
30	0.6	538	2	0.01	99.27	0.73
50	0.3	537	1	0.01	99.28	0.72
100	0.15	0	0	0.00	99.28	0.72
Pan	0	0	0	0.00	99.28	0.72
An	nount		14892	99.28	624.91	
	eness dulus	\sum % Retained Cumulative/100			6.25	

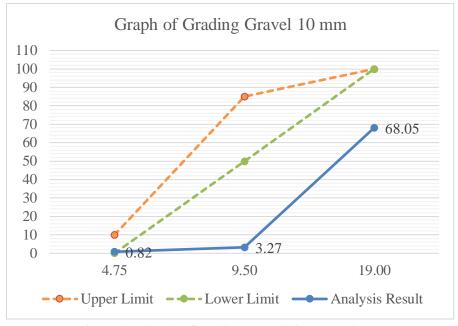
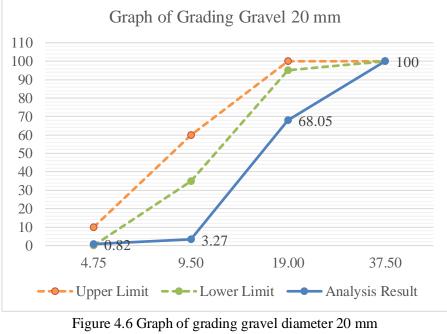
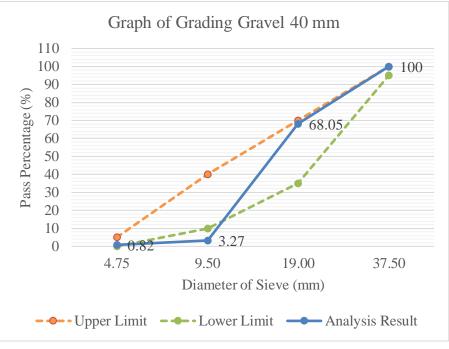




Figure 4.5 Graph of grading gravel diameter 10 mm (Source: Author, 2024)

(Sourc: Author, 2024)

Gambar 4.1 Graph of grading gravel diameter 40 mm (Source: Author, 2024)

From the results of the grave sieve analysis, it is concluded that the sand used in the study is 40 mm grading.

2) Volume Weight Testing of Coarse Aggregate

Table 4.11	Result data	of volume	weight testi	ng of	coarse aggregate

Test	With S	stabbed	Without Stabbed		
Test	Ι	II	Ι	II	
Cylinder Weight (gr)	3728	3728	3728	3728	
D/H Cylinder (cm)	15.5/15	15.5/15	15.5/15	15.5/15	
Volume of Cylinder (cm ³)	2830.38	2830.38	2830.38	2830.38	
Cylinder + Gravel (gr)	7478	7532	8169	8158	
Gravel Weight (gr)	3750	3804	4441	4430	
Weight/Volume (gr/cm ³)	1.325	1.344	1.569	1.565	
Mean	1.3	1.334		1.567	
(Source: Author 2024)					

Calculation without stabbed:

Volume Weight = $\frac{\text{(Cylinder Weight+Gravel Weight)-Cylinder Weight}}{\text{Volume of Cylinder}}$ Volume Weight = $\frac{7478 - 3728}{2830.38} = 1.325 \text{ g/cm}^3$ Volume Weight = $\frac{7532 - 3728}{2830.38} = 1.344 \text{ g/cm}^3$ Calculation with stabbed: Volume Weight 1 = $\frac{8169 - 3728}{2830.38} = 1.569 \text{ g/cm}^3$ Volume Weight 2 = $\frac{8158 - 3728}{2830.38} = 1.565 \text{ g/cm}^3$

3) Gravel Relative Density

Table 4.12 Gravel relative density analysis

Test No.	Ι	Π	
Gravel Weight SSD (W1) (g)	3000	3000	
Basket Weight (g)	954	954	
Gravel Weight in Water (W2) (g)	1847	1866	
Basket Weight in Water (W3) (g)	820	820	
Gravel Relative Density (Kg/L)	2.60	2.65	
Mean	2.	2.62	

(Source: Author, 2024)

Calculation:

Gravel Relative Density =
$$\frac{W1}{W1 - ((W2+W3)-W3)}$$

Gravel Relative Density 1 = $\frac{3000}{3000 - ((820+1847)-820)}$ = 2.60 kg/l
Gravel Relative Density 2 = $\frac{3000}{3000 - ((820+1866)-820)}$ = 2.65 kg/l

4) Gravel Moisture Analysis

Table 4.13 Result data of gravel moisture analysis

Test No.	Ι	II
Tray Weight (gr)	336	345
Teray Weight + Gravel (gr)	3336	3345
Gravel (gr)	3000	3000
Tray Weight + Oven Gravel (gr)	3324	3309
Oven Gravel Weight (gr)	2988	2964
Moisture (%)	0.40	1.21
Mean (%)	0.81	

(Source: Author, 2024)

Calculation:

Moisture = $\frac{\text{Gravel weight-Oven Gravel Weight}}{\text{Oven Gravel Weight}} \times 100\%$ Moisture 1 = $\frac{3000-2988}{2988} \times 100\% = 0.40\%$ Moisture 2 = $\frac{3000-2964}{2964} \times 100\% = 1.21\%$

5) Gravel Absorption Testing

Table 4.14 Result of gravel absorption testing

Test No.	Ι	II
Tray Weight (gr)	141	541
Tray Weight + SSD Gravel (gr)	3141	3541
Weight of SSD Gravel (gr)	3000	3000
Tray Weight + Gravel oven (gr)	3060	3453
Oven Gravel Weight (gr)	2919	2912
Gravel Absorption (%)	2.77	3.02
Mean	2.	90

(Source: Author, 2024)

Calculation:

Gravel Absorption = $\frac{\text{SSD Gravel-Oven Gravel}}{\text{Oven Gravel}} \times 100\%$ Gravel Absorption 1 = $\frac{3000-2919}{2919} \times 100\% = 2.77\%$ Gravel Absorption 2 = $\frac{3000-2912}{2912} \times 100\% = 3.02\%$ Analysis of Gravel Cleanliness Against Material Finer than Sieve No.200 Table 4.15 Analysis of Sand Cleanliness Against Mud by Dry Method

Test No.	1	2	
Height of Mud (mm) (H1)	1	1	
Height of Gravel (mm) (H2)	124	117	
Mud Content %	0.81	0.85	
Mean	0.83		

(Source: Author, 2024) Calculation: Gravel Cleanliness Against Mud = $\frac{\text{H1}}{\text{H2}} \times 100\%$ Gravel Cleanliness Against Mud 1 = $\frac{1}{124} \times 100\%$ = 0.81 % Gravel Cleanliness Against Mud 2 = $\frac{1}{117} \times 100\%$ = 0.85 %

7) Gravel Abrasion Testing

Table 4.16 Gravel Abrasion Testing

Test No.	Ι	II
Tray Weight (gr)	193	546
Gravel Weight before Abrasion (gr)	5000	5000
Gravel Weight Retained Sieve 12 after Abrasion + Tray	3848	4177
Gravel Weight Retained Sieve 12 after Abrasion		3631
Abrasion (%)	26.9	27.38
Mean	27.14	

(Source: Author, 2024)

Calculation:

 $Abrasion = \frac{\text{Gravel Initial Weight-Gravel Weight Retained Sieve 12}}{\text{Gravel Initial Weight}} \times 100\%$ $Abrasion 1 = \frac{5000-3848}{5000} \times 100\% = 26.90\%$ $Abrasion 2 = \frac{5000-4177}{5000} \times 100\% = 27.38\%$

	Table 4.17 Recapitulation of analysis result						
No.	Testing	Testing Result	Specification	Standard			
1	Fineness Modulus	6.25	6.0 - 7.1	ACI E1-07			
2	Grading Zone	40 mm	10, 20, 40 mm	SNI 03-2834-2000			
3	Volume Weight	1.334	1.2 to 1.76	ACI E1-07			
4	Relative Density	2.62	2.4 to 2.9	ACIEI-07			
5	Moisture	0.81	-	SNI 03-1971-1990			
6	Absorption	2.90	0.5 to 4 %				
7	Cleanness from material finer than sieve No. 200	0.83	Max 1%	ACI E1-07			
8	Abrasion	27.14%	Max 40%	ASTM-C127			

8) Recapitulation of Analysis Result

Table 4.17 Recapitulation of analysis result

(Source: Author, 2024)

Based on the results of the gravel material test analysis, it is concluded that the gravel meets the standard requirements.

4.1.3 Dead Coral Reefs Testing Results

1) Dead Coral Reefs Sieve Analysis Weight of Coral Reefs: 15000 grams

Table 4.18 Result data of dead coral reefs sieve analysis

Sieve		Retained on The Sieve			% Cumul	% Cumulative	
No.	mm	Tray + Coral	Coral	(%) Retained Coral	Retained	Pass	
		(gr)	(gr)	(%)	(%)	(%)	
3/2"	38.1	0	0	0	0	100	
3/4"	19	5329	4260	28.40	28.40	71.6	
3/8"	9.5	10252	9512	63.41	91.81	8.19	
4	4.75	904	1208	8.05	99.87	0.13	
8	2.36	544	7	0.05	99.91	0.09	
16	1.18	540	3	0.02	99.93	0.07	
30	0.6	538	0	0.00	99.93	0.07	
50	0.3	537	0	0.00	99.93	0.07	
100	0.15	0	0	0.00	99.93	0.07	
Pan	0	0	0	0.00	99.93	0.07	
An	nount		14892	99.93	619.79		
	eness dulus				6.20		



Figure 4.7 Graph of coral reef grading 10 mm (Source: Author, 2024)

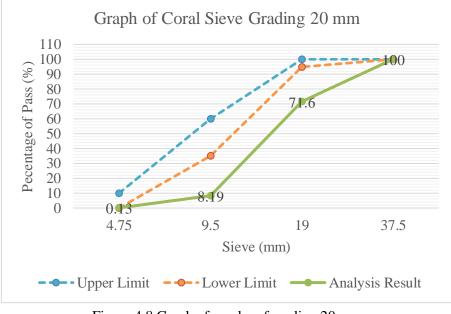


Figure 4.8 Graph of coral reef grading 20 mm (Source: Author, 2024)

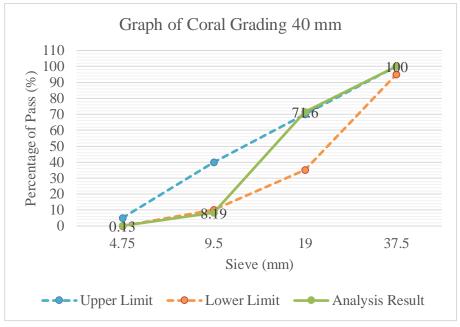


Figure 4.9 Graph of coral reef grading 40 mm

From the results of the coral sieve analysis, it was concluded that the corals used in this study were close to 40 mm grading.

2)	Coral Reef	Volume	Weight	Testing
----	------------	--------	--------	---------

Test No.	Without stabbed		With stabbed		
1031100.	Ι	II	Ι	II	
Cylinder Weight (A) (gr)	3728	3728	3728	3728	
D/H Cylinder (cm)	15,5/15	15,5/15	15,5/15	15,5/15	
Volume cylinder (V) (cm3)	2830.38	2830.38	2830.38	2830.38	
Cylinder + Coral (B) (gr)	5961	5959	6179	6241	
Coral Weight (gr)	2233	2231	2451	2513	
Weight/volume (gr/cm3)	0.789	0.788	0.866	0.888	
Mean	0.788		0.877		

Table 4.19 Result data of coral reef volume weight

(Source: Author, 2024)

Calculation without stabbed:

Volume Weight = $\frac{(Cylinder Weight+Coral Reef Weight)-Cylinder Weight}{(Cylinder Weight)-Cylinder Weight)}$ Cylinder Volume

Volume Weight1 = $\frac{5961-3728}{2830.38}$ = 0.789 g/cm ³
Volume Weight 2 = $\frac{5959 - 2231}{2830.38}$ = 0.788 g/cm ³
Calculation with stabbed:
Volume Weight 1 = $\frac{6179 - 2451}{2830.38} = 0.866 \text{ g/cm}^3$
Volume Weight 2 = $\frac{6241 - 2513}{2830.38} = 0.888 \text{ g/cm}^3$

3) Relative Density of Dead Coral Reefs

Table 4.20 Result data of relative density of dead coral reefs testing

Test No.	Ι	II
Coral Weight SSD (W1) (g)	3000	3000
Basket Weight (g)	954	954
Coral Weight in Water (W2) (g)	2354	2308
Basket Weight in Water (W3) (g)	820	820
Coral Relative Density (Kg/L)	2.046	1.984
Mean 2.015		15

(Source: Author, 2024)

Calculation:

Coral Reefs Relative Density = $\frac{W1}{W1 - ((W2+W3)-W3)}$ Relative Density = $\frac{3000}{3000 - ((820+2354)-820)} = 2.046 \text{ Kg/l}$ Relative Density = $\frac{3000}{3000 - ((820+2308)-820)} = 1.984 \text{ Kg/l}$ Deed Corel Decod Maria - Trans

4) Dead Coral Reef Moisture Test

Table 4.21 Result data dead coral reef moisture test

Test No.	Ι	II
Tray Weight (gr)	139	536
Tray Weight + Coral (gr)	3139	3536
Coral (gr)	(gr) 3000 3	
Tray Weight + Oven Coral (gr)	3042	3447
Oven Coral Weight (gr)	2903	2911
Moisture (%)	6) 3.34 3.06	
Mean (%)	3.	20

Calculation: Moisture = $\frac{\text{Reef Weight-Oven Reef Weight}}{\text{Oven Reef Weight}} \times 100\%$ Moisture 1 = $\frac{3000-2903}{2903} \times 100\% = 3.34\%$ Moisture 2 = $\frac{3000-2911}{2911} \times 100\% = 3.06\%$

5) Dead Coral Reef Absorption

Table 4.22 Coral Gravel water absorption test result data

Experiment Number	Ι	II
Tray Weight (gr)	700	1235
Tray Weight + SSD Coral (gr)	3700	4235
Weight of SSD Coral (gr)	3000	3000
Tray Weight + Coral oven (gr)	3334	3887
Oven Coral Weight (gr)	2634	2652
Coral Absorption (%)	13.90	13.12
Mean	13.51	

(Source: Author, 2024)

Calculation:

Coral Reef Absorption =	SSD Weight-Oven Reef Weight	
Coral Reel Absorption -	Oven Reef Weight *100%	
Coral Reef Absorption =	$\frac{3000-2634}{2634} \times 100\% = 13.90\%$	
Coral Reef Absorption =	$=\frac{3000-2652}{2652}\times100\%=13.12\%$	

 Testing of Coral Material Finer than Sieve No. 200 by Dry Method Table 4.23 Result data of testing of coral sludge content by dry method

Experiment Number	Ι	II		
Tray Weight (gr)	343	347		
Coral Weight (gr)	1000	1000		
Coral + tray (gr)	1305	1310		
Coral after Washed (gr)	962	963		
Sludge Content (%)	3.8	3.7		
Mean (%)	3.75			
$(\mathbf{S}_{1}, \mathbf{A}_{1}, \mathbf{A}_{2}, A$				

Calculation:
Sludge Content = $\frac{\text{Coral Weight -Coral after Washed}}{2} \times 100\%$
Coral Weight
Sludge Content 1 = $\frac{1000-962}{1000} \times 100\% = 3.8\%$
Sludge Content $2 = \frac{1000-963}{1000} \times 100\% = 3.7\%$

7) Coral Reefs Abrasion Test

Table 4.24 Result data of coral reefs abrasion test

Experiment Number	Ι	II
Tray Weight (gr)	543	540
Coral Weight before Abrasion (gr)	5000	5000
Coral Weight Retained Sieve 12 after Abrasion + Tray	2522	2530
Coral Weight Retained Sieve 12 after Abrasion	1979	1990
Abrasion (%)	60.42	60.20
Mean	60.31	

(Source: Author, 2024)

Calculation: Abrasion = $\frac{\text{Coral Initial Weight-Coral Weight Retained Sieve 12}}{\text{Coral Initial Weight}} \times 100\%$ Abrasion 1 = $\frac{5000-1979}{5000} \times 100\% = 60.42\%$ Abrasion 2 = $\frac{5000-1990}{5000} \times 100\% = 60.20\%$

8) Recapitulation of Analysis Result

Table 4.25 Recapitulation of dead coral reef test analysis result

No.	Testing	Testing Result	Specification	Standard	
1	Fineness Modulus	6.20	6.0 - 7.1	ACI E1-07	
2	Grading Zone	40 mm	10, 20, 40 mm	SNI 03-2834-2000	
3	Volume Weight	0.778	1.2 to 1.76	ACI E1-07	
4	Relative Density	2.015	2.4 to 2.9	ACI EI-07	
5	Moisture	3.2	-	SNI 03-1971-1990	
6	Absorption	13.51%	0.5 to 4 %		
	Cleanness from			ACI E1-07	
7	material finer than	3.75%	Max 1%		
	sieve No. 200				
8	Abrasion	60.31%	Max 40%	ASTM-C127	

(Source: Author, 2024)

Based on the results of the research on the characteristics of dead coral reefs, it can be concluded that coral reef aggregates do not meet the requirements of normal coarse aggregate characteristics. From this research obtained:

- The specific gravity value of coral aggregate does not meet the requirements of normal aggregate specific gravity, which is consistent with the research conducted by Pangaribuan & Narlis (2015). The specific gravity value of coral aggregate (2.015 g/cm3) is less than that of crushed gravel (2.62 g/cm3), indicating that coral aggregate is lighter than crushed gravel. It also shows that in the same volume, coral aggregate weighs less than crushed gravel aggregate, so the volume weight value of coral aggregate (0.778 g/cm3) is less than crushed gravel aggregate (1.334 g/cm3).
- Coral aggregate has high absorption Wang et al. (2023). The coral aggregate has far more pores than the crushed gravel aggregate so its absorption value (13.51%) is also higher than the absorption value of crushed gravel (2.90%). Coarse aggregates that have many voids make the aggregates absorb water around them (Sultan et al., 2018).
- In this study, the abrasion value of coarse aggregates was 60.31%, which is greater than the abrasion of crushed gravel, which is 27.14%. This shows that coral aggregates are more brittle than gravel aggregates, because the higher the abrasion value, the smaller the aggregate resistance to wear. The higher the abrasion/wear value, the smaller the specific gravity of the coarse aggregate, which is consistent with research conducted by Rondonuwu et al. (2013).

Table 4.26 Analysis of 0% Coral Reefs in Coarse Aggregate Admixture						
Sieve		Retained		% Cumulative		
N.		Coral Reef	Gravel	Coral Reef	Gravel	E9/
No.	mm	%	%	(%)	(%)	E%
				0.00	100	
3/2"	37.5	100	100	0	100.00	100.00
3/4"	19	71.6	68.05	0	68.05	68.05
3/8"	9.5	8.19	3.27	0	3.27	3.27
4	4.75	0.13	0.82	0	0.82	0.82
8	2.36	0.09	0.77	0	0.77	0.77
16	1.18	0.07	0.74	0	0.74	0.74
30	0.6	0.07	0.73	0	0.73	0.73
50	0.3	0.07	0.72	0	0.72	0.72
100	0.15	0.07	0.72	0	0.72	0.72
Pan	0	0.07	0.72	0	0.72	0.72

Mix Design Analysis of Gravel and Coral 4.1.4

1) 0% Coral Reefs in Coarse Aggregate Admixture

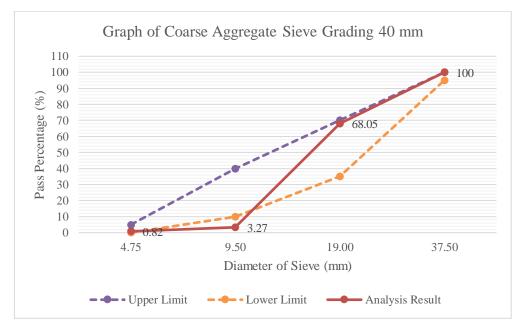


Figure 4.10 Graph of 0% coral in coarse aggregate combine, grade 40 mm (Source, Author, 2024)

				00 0				
Si	Sieve Retai		ed	% C	Cumulative			
Ne	Coral Reef		Gravel	Coral Reef	Gravel	E0/		
No.	mm	%	%	(%)	(%)	E%		
				25	75			
3/2"	37.5	100	100	25	75.00	100.00		
3/4"	19	71.6	68.05	17.9	51.04	68.94		
3/8"	9.5	8.19	3.27	2.0475	2.45	4.50		
4	4.75	0.13	0.82	0.03	0.62	0.65		
8	2.36	0.09	0.77	0.02	0.58	0.60		
16	1.18	0.07	0.74	0.02	0.56	0.57		
30	0.6	0.07	0.73	0.02	0.55	0.57		
50	0.3	0.07	0.72	0.02	0.54	0.56		
100	0.15	0.07	0.72	0.02	0.54	0.56		
G								

2) 25% Coral Reefs in Coarse Aggregate Admixture

Table 4.27 25% Coral Reefs in Coarse Aggregate Admixture

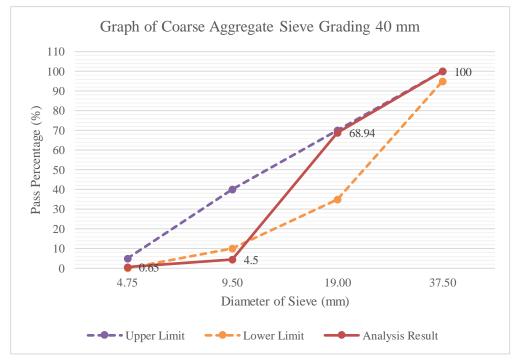


Figure 4.11 Graph of 25% coral in coarse aggregate combine, grade 40 mm (*Source: Author, 2024*)

Siev	ve	Retain	ed	% C	Cumulative	
No.	mm	Coral Reef	Gravel	Coral Reef	Gravel	
		%	%	(%)	(%)	E%
				50	50	
3/2"	37.5	100	100	50.00	50.00	100.00
3/4"	19	71.6	68.05	35.80	34.03	69.83
3/8"	9.5	8.19	3.27	4.10	1.64	5.73
4	4.75	0.13	0.82	0.07	0.41	0.48
8	2.36	0.09	0.77	0.05	0.39	0.43
16	1.18	0.07	0.74	0.04	0.37	0.41
30	0.6	0.07	0.73	0.04	0.37	0.40
50	0.3	0.07	0.72	0.04	0.36	0.40
100	0.15	0.07	0.72	0.04	0.36	0.40

50% Coral Reefs in Coarse Aggregate Admixture Table 4.28 50% Coral Reefs in Coarse Aggregate Admixture

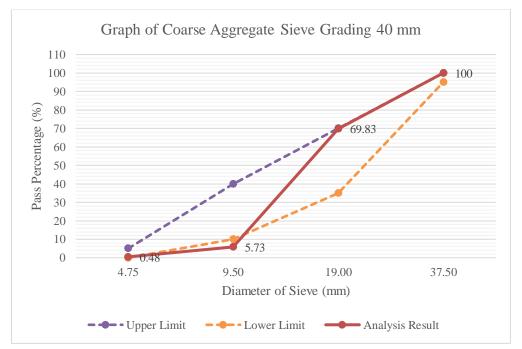


Figure 4.12 Graph of 50% coral in coarse aggregate combine, grade 40 mm (*Source: Author, 2024*)

Sie	eve	Retair	ned	%Cumulative		
No.	mm	Coral Reef %	Gravel %	Coral Reef (%)	Gravel (%)	E%
				60	40	
3/2"	37.5	100	100	60.00	40.00	100.00
3/4"	19	71.6	68.05	42.96	27.22	70.18
3/8"	9.5	8.19	3.27	4.91	1.31	6.22
4	4.75	0.13	0.82	0.08	0.33	0.41
8	2.36	0.09	0.77	0.05	0.31	0.36
16	1.18	0.07	0.74	0.04	0.30	0.34
30	0.6	0.07	0.73	0.04	0.29	0.33
50	0.3	0.07	0.72	0.04	0.29	0.33
100	0.15	0.07	0.72	0.04	0.29	0.33

4) 60% Coral Reefs in Coarse Aggregate Admixture

Table 4.29 60% Coral Reefs in Coarse Aggregate Admixture

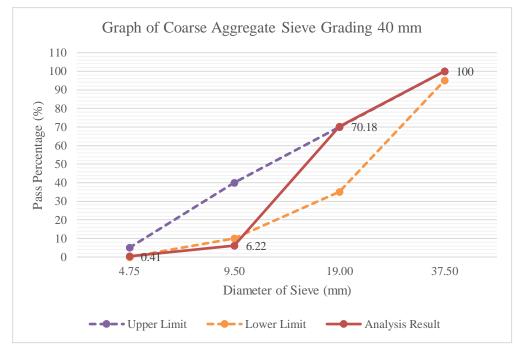


Figure 4.13 Graph of 60% coral in coarse aggregate combine, grade 40 mm (*Source: Author, 2024*)

Sie	eve	Retained		%Cumulative			
No.		Coral Reef	Gravel	Coral Reef	Gravel	E%	
INO.	mm	%	%	(%)	(%)	E%	
				0.75	0.25		
3/2"	37.5	100	100	75.00	25.00	100.00	
3/4"	19	71.6	68.05	53.70	17.01	70.71	
3/8"	9.5	8.19	3.27	6.14	0.82	6.96	
4	4.75	0.13	0.82	0.10	0.21	0.30	
8	2.36	0.09	0.77	0.07	0.19	0.26	
16	1.18	0.07	0.74	0.05	0.19	0.24	
30	0.6	0.07	0.73	0.05	0.18	0.24	
50	0.3	0.07	0.72	0.05	0.18	0.23	
100	0.15	0.07	0.72	0.05	0.18	0.23	

5) 75% Coral Reefs in Coarse Aggregate Admixture

Table 4.30 75% Coral Reefs in Coarse Aggregate Admixture

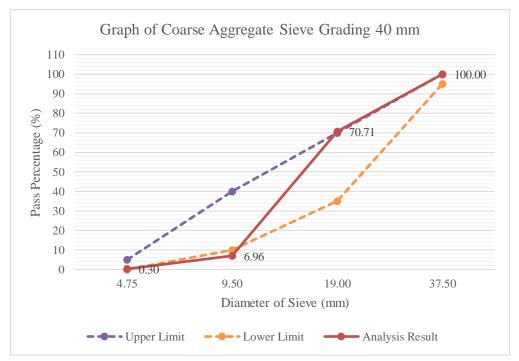


Figure 4.14 Graph of 75% coral in coarse aggregate combine, grade 40 mm (*Source: Author, 2024*)

4.2 Mix Design of Sand, Gravel, and Coral

1) Coral 0% in Combine Aggregate

Table 4.31 Analysis of coral 0% in Combine Aggregate

No.	mm	Sand	Gravel	Coral Reef	Sand	Gravel	Coral Reef	Е
		%	%	%			Keel	(%)
					39%	61%	0%	
3/2"	37.5	100	100	100	39.00	61.00	0.00	100.00
3/4"	19	100	68.05	71.6	39.00	41.51	0.00	80.51
3/8"	9.5	100	3.27	8.19	39.00	1.99	0.00	40.99
4	4.75	96.2	0.82	0.13	37.52	0.50	0.00	38.02
8	2.36	90.5	0.77	0.09	35.30	0.47	0.00	35.76
16	1.18	75.2	0.74	0.07	29.33	0.45	0.00	29.78
30	0.6	52.1	0.73	0.07	20.32	0.45	0.00	20.76
50	0.3	34.4	0.72	0.07	13.42	0.44	0.00	13.86
100	0.15	12.2	0.72	0.07	4.76	0.44	0.00	5.20

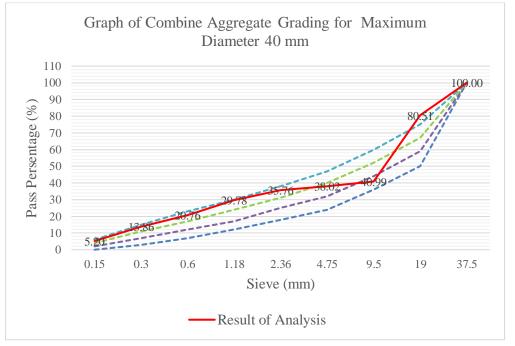


Figure 4.15 Graph of combine aggregate grading with 0% coral content (Source: Author, 2024)

	Table 4.52 Analysis of colar 25% in Combine Aggregate							
No.	mm	Sand	Gravel	Coral Reef	Sand	Gravel	Coral	Е
		% % %		Reef	(%)			
					39%	45.75%	15.25%	
3/2"	37.5	100	100	100	39.00	45.75	15.25	100.00
3/4"	19	100	68.05	71.6	39.00	31.13	10.92	81.05
3/8"	9.5	100	3.27	8.19	39.00	1.50	1.25	41.75
4	4.75	96.2	0.82	0.13	37.52	0.38	0.02	37.91
8	2.36	90.5	0.77	0.09	35.30	0.35	0.01	35.66
16	1.18	75.2	0.74	0.07	29.33	0.34	0.01	29.68
30	0.6	52.1	0.73	0.07	20.32	0.33	0.01	20.66
50	0.3	34.4	0.72	0.07	13.42	0.33	0.01	13.76
100	0.15	12.2	0.72	0.07	4.76	0.33	0.01	5.10

2) Coral 25% in Combine Aggregate

Table 4.32 Analysis of coral 25% in Combine Aggregate

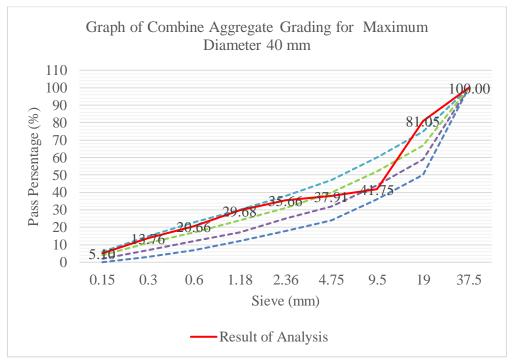


Figure 4.16 Graph of combine aggregate grading with 25% coral content (Source: Author, 2024)

No.	mm	Sand	Gravel	Coral Reef	Sand	Gravel	Coral	Е
		%	%	%			Reef	(%)
					39%	30.5%	30.5%	
3/2"	37.5	100	100	100	39.00	30.50	30.50	100.00
3/4"	19	100	68.05	71.6	39.00	20.76	21.48	81.24
3/8"	9.5	100	3.27	8.19	39.00	1.00	2.46	42.45
4	4.75	96.2	0.82	0.13	37.52	0.25	0.04	37.81
8	2.36	90.5	0.77	0.09	35.30	0.23	0.03	35.56
16	1.18	75.2	0.74	0.07	29.33	0.23	0.02	29.57
30	0.6	52.1	0.73	0.07	20.32	0.22	0.02	20.56
50	0.3	34.4	0.72	0.07	13.42	0.22	0.02	13.66
100	0.15	12.2	0.72	0.07	4.76	0.22	0.02	5.00
a		202 ()						

3) Coral 50% in Combine Aggregate

Table 4.33 Analysis of coral 50% in Combine Aggregate

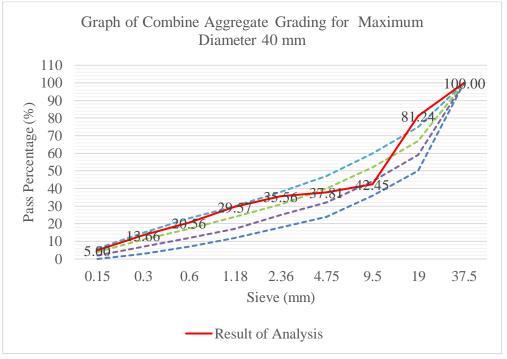


Figure 4.17 Graph of combine aggregate grading with 50% coral content (Source: Author, 2024)

	Table 4.54 Analysis of colar 60% in Combine Aggregate							
No.	mm	Sand	Gravel	Coral Reef	Sand	Gravel	Coral	Е
		%	%	%			Reef	(%)
					39.0%	24.4%	36.6%	
3/2"	37.5	100	100	100	39.00	24.40	36.60	100.00
3/4"	19	100	68.05	71.6	39.00	16.60	26.21	81.81
3/8"	9.5	100	3.27	8.19	39.00	0.80	3.00	42.80
4	4.75	96.2	0.82	0.13	37.52	0.20	0.05	37.77
8	2.36	90.5	0.77	0.09	35.30	0.19	0.03	35.52
16	1.18	75.2	0.74	0.07	29.33	0.18	0.03	29.53
30	0.6	52.1	0.73	0.07	20.32	0.18	0.03	20.52
50	0.3	34.4	0.72	0.07	13.42	0.18	0.03	13.62
100	0.15	12.2	0.72	0.07	4.76	0.18	0.03	4.96

4) Coral 60% in Combine Aggregate

Table 4.34 Analysis of coral 60% in Combine Aggregate

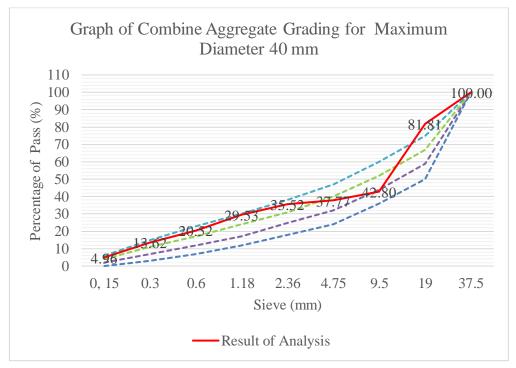


Figure 4.18 Graph of combine aggregate grading with 60% coral content (*Source: Author, 2024*)

Table 4.55 Marysis of colar 75% in Combine Aggregate								
No.	mm	Sand	Gravel	Coral Reef	Sand	Gravel	Coral	Е
110.	11111	%	%	%	Sand	Glaver	Reef	(%)
					39.00%	15.25%	45.75%	
3/2"	37.5	100	100	100	39.00	15.25	45.75	100.00
3/4"	19	100	68.05	71.6	39.00	10.38	32.76	82.13
3/8"	9.5	100	3.27	8.19	39.00	0.50	3.75	43.25
4	4.75	96.2	0.82	0.13	37.52	0.13	0.06	37.70
8	2.36	90.5	0.77	0.09	35.30	0.12	0.04	35.45
16	1.18	75.2	0.74	0.07	29.33	0.11	0.03	29.47
30	0.6	52.1	0.73	0.07	20.32	0.11	0.03	20.46
50	0.3	34.4	0.72	0.07	13.42	0.11	0.03	13.56
100	0.15	12.2	0.72	0.07	4.76	0.11	0.03	4.90
(0		202.0						

5) Coral 75% in Combine Aggregate

Table 4.35 Analysis of coral 75% in Combine Aggregate

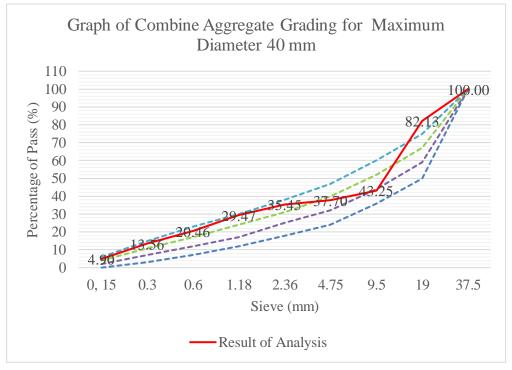


Figure 4.19 Graph of combine aggregate grading with 75% coral content (Source: Author, 2024)

4.3 Mix Design Analysis

4.3.1 Mix Design Form

Table 4.36 Mix design analysis

No	Description	Term/Reference	Value	
1	Characteristic compressive strength (fc)	Determined	14.5 MPa (175 kg/cm ²) at 28 days. 5% defect	
2	Standard deviation (s)	Unknown from previous data	-	
3	Margin (m)	SNI 03-2847-2013	7 MPa (70 kg/cm ²)	
4	Average strength to be achieved	1+3	$175 + 70 = 245 \text{ kg/cm}^2$	
5	Type of cement	Retrieved	Portland type 1	
6	Type of	Coarse	Crushed gravel and dead reef	l coral
	Aggregate	Fine	Sand (natural)	
7	Water cement factor	SNI 03-2834-2000	0.68	
8	Water cement factor maximum	SNI 03-2834-2000	0.60	
9	Slump	SNI 03-2834-2000	100	mm
10	Maximum size aggregate	SNI 03-2834-2000	40	mm
11	Free water content	SNI 03-2834-2000	185	Kg/m ³
12	Cement content	11:7 or 11:8	185 : 0.60 = 308.33	Kg/cm ³
13	Maximum cement content		There is no requirement in this case	
14	Minimum cement content	SNI 03-2834-2000	275	Kg/cm ³
15	Water cement factor adjusted	11:275	0.60	
16	Grain size arrangement of fine aggregate	SNI 03-2834-2000	Area (zone) of grain arrangement	2

No	Description	Term/Reference	-	Value	
17	Percent finer material than 4.8 mm	SNI 03-2834-2000	39		%
			2.66		0%
			2.57		25%
18	Relative density		2.47		50%
	of SSD aggregate		2.44		60%
			2.38		75%
			2.66	Kg/cm ³	0%
	~		2.57	Kg/cm ³	25%
19	Concrete unit	SNI 03-2834-2000	2.47	Kg/cm ³	50%
	weight		2.44	Kg/cm ³	60%
			2.38	Kg/cm ³	75%
			2408	Kg/cm ³	0%
	Weight of		2344	Kg/cm ³	25%
20	combined	19-11-12	2275	Kg/cm ³	50%
	aggregate		2256	Kg/cm ³	60%
			2219	Kg/cm ³	75%
			1914.67	Kg/cm ³	0%
			1850.67	Kg/cm ³	25%
21	Fine aggregate	20 x 17	1781.67	Kg/cm ³	50%
	weight		1762.67	Kg/cm ³	60%
			1725.67	Kg/cm ³	75%
			746.72	Kg/cm ³	0%
			721.76	Kg/cm ³	25%
22	Coral reef weight	%Coral reef x (20	694.85	Kg/cm ³	50%
		-21)	687.44	Kg/cm ³	60%
			673.01	Kg/cm ³	75%
			0.00	Kg/cm ³	0%
			282.23	Kg/cm ³	25%
23	Gravel weight	20 - 21 - 22	543.41	Kg/cm ³	50%
	Č		645.14	Kg/cm ³	60%
			789.49	Kg/cm ³	75%

Table 4.37 Mix design analysis continue

4.3.2 Explanation of Form Filling

- 1. The required compressive strength has been set at 14.5 MPa at 28 days.
- 2. Standard deviation data is not available because there is no previous data
- 3. The margin value is based on SNI 2847-2013 because there is no standard deviation data, then for f'c which is less than 21 MPa, the added value is determined by the table which is 7.0 MPa.

Required compressive strength	Average compressive strength required
(MPa)	(MPa)
f'c < 21	$\mathbf{f}^{*}\mathbf{c}\mathbf{r}=\mathbf{f}^{*}\mathbf{c}+7.0$
$21 \le f^{\circ}c \le 35$	$\mathbf{f}^{*}\mathbf{c}\mathbf{r} = \mathbf{f}^{*}\mathbf{c} + 8.3$
f'c > 35	f'cr = 1.10f'c + 5.0
(C, C, C, U, C, Q, U, U, C, Q, U,	

Table 4.38 The average strength is necessary

(Source: SNI 2847-2013)

4. Calculation of average compressive strength

F'cr = f'c + 7.0

= 14.5 + 7.0 = 21.5 MPa

- 5. Type of cement specified Portland type I
- 6. Type of aggregate:
 - Natural fine aggregate, namely Lumajang sand
 - Coarse aggregate of crushed gravel and coral
- 7. The free cement water factor based on SNI 03-2834-2000 is determined from the graph below. From the table, it is known that the coarse aggregate of crushed gravel and type I cement has an expected compressive strength at 28 days of age of 37 MPa with a cement water factor of 0.50. This value was used to create a curve to be followed based on the following figure:

Type of cement	Type of Coarse Aggregate	Compressive Strength (MPa)				
		At the age (days)				Shape
		3	7	28	29	Shape of
						Specimen
Portland Cement type I	Uncrushed	17	23	33	40	Cylinder
	stone					
	Crushed stone	19	27	37	45	
Sulphate	Uncrushed	20	28	40	48	Cube
Resistance	Stone	20	20	40	40	
Cement Type II, V	Crushed stone	25	32	45	54	
Portland Cement	Uncrushed	21	28	38	44	Cylinder
	stone					
	Crushed stone	25	33	44	48	
Type III	Uncrushed	25	31	46	53	Cube
	stone					
	Crushed stone	30	40	53	60	

Table 4.39 Estimated compressive strength (MPa) of concrete in Indonesia

(Source: SNI 03-2834-2000)

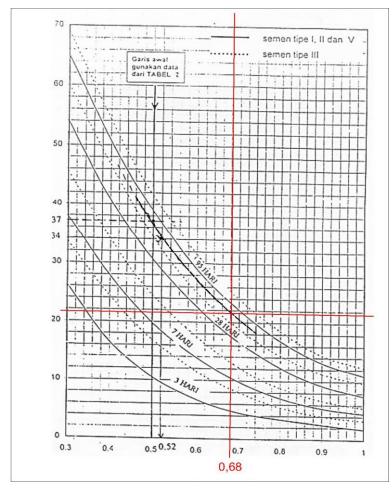


Figure 4.20 Graph of the relationship between compressive strength and W/C (Cylinder diameter 150 mm, length 300 mm) (Source: SNI 03-2834-2000)

From the point of compressive strength of 37 MPa, a line is drawn until it intersects the center line indicating a cement water factor of 0.50. Then a curve is drawn through the intersection point made, the curve is shaped approximately the same as the curve above and below it (dotted line). The concrete batching plant is designed to produce concrete that is suitable for all kinds of construction projects, including roads, bridges, dams, airports, airports, and other construction sites. This is the first time that a concrete batch plant has been built, and it's the first time that a concrete batch plant has been built. In this study obtained 0.68.

8. The maximum cement water factor obtained from SNI 2847-2013 in the following table is 0.60

Location	Minimum Cement Amount Per m ³ of Concrete (kg)	Maximum Water Cement Factor Value
Indoor concrete:		
c) Non-corrosive surrounding	275	0.60
d) Corrosive surrounding		
caused by condensation		
and corrosive vapor	325	0.52
Outdoor concrete:		
c) Unprotected from rain and		
direct sunlight	325	0.60
d) Protected from rain and		
direct sunlight	275	0.60
Concrete into the ground:		
c) Experiences wet and dry		
alternately	325	0.55
d) Under the influence of		
sulfate and alkali from the		
soil		See table 5
Continuous concrete related:		
c) Water		
d) Salt water		See table 6

Table 4.40 Requirements for the minimum cement and maximum W/C

(Source: SNI 03-2834-2000)

9. The planned slump value is 100 mm obtained from the table below. The concrete made is assumed to be used for ground floor slabs and walls, hence a value between 7.5 cm - 15 cm is taken.

Concrete usage based on the type of	Slump Value (cm)		
structure being made	Maximum	Minimum	
Walls, foundation plates and reinforced	12.5	5	
sole foundations			
Unreinforced footings, caissons and	9	2.5	
below-ground structures			
Plate, beam, column, wall	15	7.5	
Road pavement	7.5	5	
Mass concreting (mass concrete)	7.5	2.5	
(Source: SNI 2847-2013)	1		

Table 4. 41 slump value for variation construction

(Source: SNI 2847-2013)

- 10. Maximum aggregate size set at 40 mm
- 11. Free water content based on SNI 03-2834-2000

Table 4.42 Estimated free water content (kg/m³)

Slump		0-10	0-30	30-60	60-180
Aggregate grain size maximum	Type of aggregate				
10	Uncrushed aggregate	150	180	205	225
10	Crushed aggregate	180	205	230	250
20	Uncrushed aggregate	135	160	180	190
20	Crushed aggregate	170	190	210	225
40	Uncrushed aggregate	115	140	160	175
	Crushed aggregate	155	175	190	205

(Source: SNI 03-2834-2000)

The slump value is between 60-180 mm, with a maximum aggregate grain size of 40 mm, the value of crushed gravel is 175 and uncrushed gravel is 205. Free water content = $2/3 \times 175 + 1/3 \times 205 = 185$ kg/m3

- 12. Cement content = $185/0.60 = 308.33 \text{ kg/m}^3$
- 13. Determine the percentage of fine aggregate

The percentage value of fine aggregate is obtained from the graph below. This value is obtained using known data, namely: slump value of 100 mm, cement water factor of 0.6, maximum aggregate size of 40 mm and sand zone of zone 2.

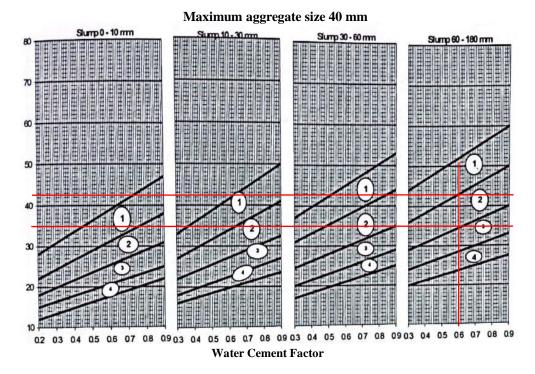


Figure 4.21 Percent of sand for a maximum grain size of 40 mm (Source: Mulyono, 2003)

From the 60-180 mm slump graph, a vertical line is drawn at point 0.6 and then a horizontal line is drawn in the area of fine aggregate zone 2. Based on the results of the combined aggregate mix design, the best grade is 39% fine aggregate percentage.

4.3.3 Calculation of Mix Design

1. Calculation of relative density SSD

Table 4.43 Material relative density result

Material Test Result	Fine	Coarse	Coral Reef	
	Aggregate (%)	Aggregate (%)	(%)	
Relative Density	2.72	2.62	2.015	
	•			

(Source: Author, 2024)

Relative density $SSD = (RD \text{ fine aggregate} \times \% \text{ fine aggregate}) + (RD \text{ coarse aggregate} \times \% \text{ coarse aggregate}) + (RD \text{ coral reef aggregate} \times \% \text{ coral reef aggregate})$

- a) Admixture of 0% coral reef = $(2.72 \times 39\%) + (2.62 \times 61\%) + (2.015 \times 65\% \times 0\%) = 2.66$
- b) Admixture of 25% coral reef = $(2.72 \times 39\%) + (2.62 \times (61\% 25\% \times 61\%) + (2.015 \times 25\% \times 61\%) = 2.57$
- c) Admixture of 50% coral reef = $(2.72 \times 39\%) + (2.62 \times (61\% 50\% \times 61\%) + (2.015 \times 50\% \times 61\%) = 2.47$
- d) Admixture of 60% coral reef = $(2.72 \times 39\%) + (2.62 \times (61\% 60\% \times 61\%) + (2.015 \times 60\% \times 61\%) = 2.44$
- e) Admixture of 75% coral reef = $(2.72 \times 39\%) + (2.62 \times (61\% 75\% \times 61\%) + (2.015 \times 75\% \times 61\%) = 2.38$
- 2. Calculation of concrete relative density/concrete unit weight The relative density of concrete is obtained from the figure below by creating a new graph with the relative density of the SSD aggregate. From the intersection point that has been made, a vertical line is drawn to show the free water content of 185 kg/m³.

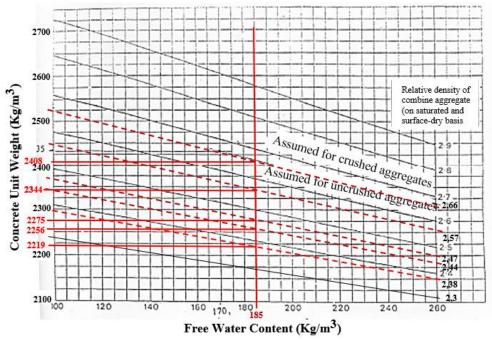


Figure 4.22 Approximate content weight of finished compacted wet concrete (Source: SNI 03-2834-2000)

- a) Concrete unit weight of 0% coral reef admixture $= 2408 \text{ kg/m}^3$
- b) Concrete unit weight of 25% coral reef admixture = 2344 kg/m^3
- c) Concrete unit weight of 50% coral reef admixture = 2275 kg/m^3
- d) Concrete unit weight of 60% coral reef admixture = 2256 kg/m^3
- e) Concrete unit weight of 75% coral reef admixture = 2219 kg/m^3
- 3. Calculation of combine aggregate, sand, gravel and coral reef
 - Calculation of combine aggregate weight = concrete unit weight cement content – water content
 - a) Admixture of 0% coral reef = $2408 308.33 185 = 1914.67 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef = $2344 308.33 185 = 1850.67 \text{ kg/m}^3$
 - c) Admixture of 50% coral reef = $2275 308.33 185 = 1781.67 \text{ kg/m}^3$
 - d) Admixture of 60% coral reef = $2256 308.33 \ 185 = 1762.67 \ \text{kg/m}^3$
 - e) Admixture of 75% coral reef = $2219 308.33 185 = 1725.67 \text{ kg/m}^3$
 - Calculation of fine aggregate = % fine aggregate × combine aggregate
 - a) Admixture of 0% coral reef = $39\% \times 1914.67 = 746.72 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef = $39\% \times 1850.67 = 721.76 \text{ kg/m}^3$
 - c) Admixture of 50% coral reef = $39\% \times 1781.67 = 694.85 \text{ kg/m}^3$
 - d) Admixture of 60% coral reef = $39\% \times 1762.67 = 687.44 \text{ kg/m}^3$
 - e) Admixture of 75% coral reef = $39\% \times 1725.67 = 673.01 \text{ kg/m}^3$
 - Calculation of coral reef aggregate = % coral reef admixture × (weight of combine aggregate weight of fine aggregate)
 - a) Admixture of 0% coral reef = $0\% \times (1914.67 746.72) = 0.00 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef = $25\% \times (1850.67 721.76) = 282.23$ kg/m³
 - c) Admixture of 50% coral reef = $50\% \times (1781.67 694.85) = 543.41$ kg/m³
 - d) Admixture of 60% coral reef = $60\% \times (1746.67 687.44) = 645.14$ kg/m³
 - e) Admixture of 75% coral reef =75% × (1725.67–673.83) = 789.49 kg/m³
 - Coarse aggregate weight calculation = aggregate combination fine aggregate – coral reef aggregate
 - a) Admixture of 0% coral reef = 19214.67 746.72 0.00 = 1167.95 kg/m³
 - b) Admixture of 25% coral reef =1850.67–721.76–282.23 = 846.68 $\ensuremath{\,kg/m^3}$

- c) Admixture of 50% coral reef =1781.67– 694.85 –543.41 = 543.41 kg/m³
- d) Admixture of 60% coral reef = 1746.67 687.44 645.14 = 430.09 kg/m³
- e) Admixture of 75% coral reef =1725.67– 673.87–789.49 = 263.16 kg/m³
- 4. Actual calculation of aggregate, water and cement

Table 4.44 Result of material absorption and moisture

Material Testing	Fine Aggregate	Coarse Aggregate	Coral Reef
Results	(%)	(%)	(%)
Absorption	0.81	2.9	13.51
Moisture	4.82	0.81	3.2

(Source: Author, 2024)

Sand absorption – sand moisture = 0.81 - 4.82 = -4.01%Gravel absorption – gravel moisture = 2.9 - 0.81 = 2.09%Coral reef absorption – coral reef moisture = 13.51 - 3.2 = 10.31%• Correction of sand = $\frac{Sand Absorption - Sand Moisture}{100}$ × Theoretical Sand a) Admixture of 0% coral reef = $\frac{0.81 - 4.82}{100}$ ×746.72 = -29.94 kg/m³ b) Admixture of 25% coral reef = $\frac{0.81 - 4.82}{100}$ ×721.76= -28.94 kg/m³ c) Admixture of 50% coral reef = $\frac{0.81 - 4.82}{100}$ ×694.85= -27.86 kg/m³ d) Admixture of 60% coral reef = $\frac{0.81 - 4.82}{100}$ ×687.44= -27.57 kg/m³ e) Admixture of 75% coral reef = $\frac{0.81 - 4.82}{100}$ ×673.01= -26.99 kg/m³ • Correction of gravel = $\frac{\text{Gravel Absorption - Gravel Moisture}}{100}$ ×Theoretical Gravel a) Admixture of 0% coral reef = $\frac{2.9 - 0.81}{100}$ ×1167.95 = 24.41 kg/m³ b) Admixture of 50% coral reef = $\frac{2.9 - 0.81}{100}$ ×16.68 = 17.70 kg/m³ c) Admixture of 50% coral reef = $\frac{2.9 - 0.81}{100}$ ×430.09 = 8.99 kg/m³ e) Admixture of 60% coral reef = $\frac{2.9 - 0.81}{100}$ × 263.16 = 5.50 kg/m³ e) Admixture of 75% coral reef = $\frac{2.9 - 0.81}{100}$ × 263.16 = 5.50 kg/m³ b) Admixture of 0% coral reef = $\frac{2.9 - 0.81}{100}$ × 263.16 = 5.50 kg/m³ • Correction of coral reef = $\frac{Coral Absorption - Gravel Moisture}{100}$ × Theoretical Coral a) Admixture of 25% coral reef = $\frac{2.9 - 0.81}{100}$ × 263.16 = 5.50 kg/m³ b) Admixture of 0% coral reef = $\frac{13.51 - 3.2}{100}$ × 0 = 0.00 kg/m³ b) Admixture of 25% coral reef = $\frac{13.51 - 3.2}{100}$ × 282.23 = 29.10 kg/m³

- c) Admixture of 50% coral reef = $\frac{13.51 3.2}{100} \times 543.41 = 56.03 \text{ kg/m}^3$
- d) Admixture of 60% coral reef = $\frac{13.51 3.2}{100} \times 645.14 = 66.51 \text{ kg/m}^3$ e) Admixture of 75% coral reef = $\frac{13.51 3.2}{100} \times 789.49 = 81.40 \text{ kg/m}^3$
- 5. Calculate aggregate requirement and water (actual)
 - Fine aggregate requirement = theoretical fine aggregate weight corrected sand weight
 - a) Admixture of 0% coral reef = $746.72 (-29.94) = 776.66 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef =721.76- (-28.94) = 750.70 kg/m³
 - c) Admixture of 50% coral reef = $694.85 (-27.86) = 722.71 \text{ kg/m}^3$
 - d) Admixture of 60% coral reef = $687.44 (-27.57) = 715.01 \text{ kg/m}^3$
 - e) Admixture of 75% coral reef = $673.01 (-26.99) = 700.00 \text{ kg/m}^3$
 - Gravel coarse aggregate requirement = theoretical gravel weight corrected gravel weight
 - a) Admixture of 0% coral reef = $1251.69 (24.41) = 1143.54 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef = $899.28 (18.70) = 828.99 \text{ kg/m}^3$
 - c) Admixture of 50% coral reef = $577.42 (11.36) = 532.05 \text{ kg/m}^3$
 - d) Admixture of 60% coral reef = $454.14 (8.99) = 421.10 \text{ kg/m}^3$
 - e) Admixture of 75% coral reef = $278.96 (5.50) = 257.66 \text{ kg/m}^3$
 - Coral reef requirement = theoretical coral reef weight corrected coral reef weight
 - a) Admixture of 0% coral reef = $0 0 = 0 \text{ kg/m}^3$
 - b) Admixture of 25% coral reef = $282.23 (29.10) = 253.13 \text{ kg/m}^3$
 - c) Admixture of 50% coral reef = 543.41 56.03) = 487.38 kg/m^3
 - d) Admixture of 60% coral reef = $645.14 (66.51) = 578.62 \text{ kg/m}^3$
 - e) Admixture of 75% coral reef = $789.49 (81.40) = 708.10 \text{ kg/m}^3$
 - Water requirement = theoretical water weight + corrected sand + corrected gravel + corrected coral reef
 - a) Admixture of 0% coral reef = 185 + (-29.94) + 24.41 + 0.00 = 179.47 kg/m^3
 - b) Admixture of 25% coral reef = 185 + (-28.94) + 17.70 + 29.10 = 202.85 kg/m^3
 - c) Admixture of 50% coral reef =185 + (-27.86) + 11.36 + 56.03 = 224.52 kg/m^3
 - d) Admixture of 60% coral reef = 185 + (-27.57) + 8.99 + 66.51 = 232.94 kg/m^3
 - e) Admixture of 75% coral reef = 185 + (-26.99) + 5.50 + 81.40 = 244.91 kg/m^3

6. Control of concrete admixture

Water + sand + gravel + coral reef (before adjustment) = water + sand + gravel + coral reef (after adjustment)

- a) Coral reef admixture 0% 185 + 746.72 + 1167.95 + 0.00 = 179.47 +776.66 + 1143.54 + 0.00 2099.67 = 2099.67 (ok)
- b) Coral reef admixture 25%
 185 + 721.76 + 846.68 +282.23 = 202.85 + 750.70+828.99+ 253.13
 2035.67 = 2035.67 (ok)
- c) Coral reef admixture 50%
 185 + 694.85 + 543.41 + 543.41 = 224.52 + 722.71 + 532.05 + 487.38
 1966.67 = 1966.67 (ok)
- d) Coral reef admixture 60%
 185 + 687.44 + 430.09 + 645.14 = 232.94+715.01+421.10+ 578.62
 1947.67 = 1947.67 (ok)
- e) Coral reef admixture 75%
 185 + 673.01 + 263.16 + 789.49 = 244.91 + 700.00+257.66+708.10
 1910.66 = 1910.67 (ok)
- 7. Calculate volume of specimen

Test Specimen 10 x 20 cm

Volume of mold $=\frac{1}{4} \times \pi \times d^2 \times t = \frac{1}{4} \times \frac{22}{7} \times 10^2 \times 20 = 1571.428 \text{ cm}^3$ Total sample = 2 Total volume = 1571.428 × 2 = 3142.856 cm³ The safety factor = 0.3 = 3142.856 + (3142.856 × 0.3) = 4085.71 cm³ = 0.408571 m³ **Test Specimen 15 x 30 cm** Volume of mold $=\frac{1}{4} \times \pi \times d^2 \times t = \frac{1}{4} \times \frac{22}{7} \times 15^2 \times 30 = 5303.571 \text{ cm}^3$ Total sample = 3 Total volume = 5303.571 × 3 = 15910.71 cm³ The safety factor = 0.3 = 15910.71 + (15910.71 × 0.3) = 20683.93 cm³ = 0.020684 m³

- 8. Calculate the material requirements needed in 3 test specimens with a cylindrical mold of 10 x 20 cm.
 - a) Requirement of coral reef admixture 0%

• Sand $= 776.66 \times 0.00408571 = 3.17 \text{ kg}$

	 Gravel 	= 1143.54× 0.00408571	l = 4.67 kg
	 Coral Reef 	$= 0.0 \times 0.00408571$	= 0.00 kg
	 Water 	$= 179.47 \times 0.00408571$	= 1.26 kg
	 Cement 	= 308.33× 0.00408571	= 0.73 kg
b)	Requirement of co	oral reef admixture 25%	
	 Sand 	$= 750.70 \times 0.00408571$	= 3.07 kg
	 Gravel 	= 828.99× 0.00408571	= 3.39 kg
	 Coral Reef 	= 253.13× 0.00408571	= 1.03 kg
	 Water 	= 202.85× 0.00408571	= 0.83 kg
	 Cement 	= 308.33× 0.00408571	= 1.26 kg
c)	Requirement of co	oral reef admixture 50%	
	 Sand 	$= 722.71 \times 0.00408571$	= 2.95 kg
	 Gravel 	= 532.05× 0.00408571	= 2.17 kg
	 Coral Reef 	$=487.38 \times 0.00408571$	= 1.99 kg
	 Water 	= 224.52× 0.00408571	= 0.92 kg
	 Cement 	= 308.33× 0.00408571	= 1.26 kg
d)	Requirement of co	oral reef admixture 60%	
	 Sand 	$= 715.01 \times 0.00408571$	= 2.92 kg
	 Gravel 	= 421.10× 0.00408571	= 1.72 kg
	 Coral Reef 	$= 578.62 \times 0.00408571$	= 2.36 kg
	 Water 	= 232.94× 0.00408571	= 0.95 kg
	 Cement 	= 308.33× 0.00408571	= 1.26 kg
e)	Requirement of co	oral reef admixture 75%	
	 Sand 	= 700.00× 0.00408571	= 2.86 kg
	 Gravel 	= 257.66× 0.00408571	= 1.05 kg
	 Coral Reef 	$= 708.10 \times 0.00408571$	= 2.36 kg
	 Water 	$= 244.91 \times 0.00408571$	= 0.95 kg
	 Cement 	= 308.33× 0.00408571	= 1.26 kg
	Table 4 45 N	Istanial manufactor of 2	0 10 4

Table 4.45 Material requirements of 20 x 10 cm test specimen

	Aggre	egate	Watan	Cement
Sand	Gravel	Coral Reef	w ater	
3.17	4.67	0.00	0.73	1.26
3.07	3.39	1.03	0.83	1.26
2.95	2.17	1.99	0.92	1.26
2.92	1.72	2.36	0.95	1.26
2.86	1.05	2.89	1.00	1.26
	3.17 3.07 2.95 2.92	Sand Gravel 3.17 4.67 3.07 3.39 2.95 2.17 2.92 1.72	3.17 4.67 0.00 3.07 3.39 1.03 2.95 2.17 1.99 2.92 1.72 2.36	SandGravelCoral Reefwater3.174.670.000.733.073.391.030.832.952.171.990.922.921.722.360.95

1)	Requirement of et	Star reer admixture 070	
	 Sand 	$= 776.66 \times 0.020684$	=16.06 kg
	 Gravel 	$= 1143.54 \times 0.020684$	= 15.53 kg
	 Coral Reef 	$= 0.0 \times 0.020684$	= 0.00 kg
	 Water 	$= 179.47 \times 0.020684$	= 3.71 kg
	 Cement 	= 308.33× 0.020684	= 6.38 kg
g)	Requirement of co	oral reef admixture 25%	
	 Sand 	$= 750.70 \times 0.020684$	= 15.53 kg
	 Gravel 	$= 828.99 \times 0.020684$	= 17.15 kg
	 Coral Reef 	= 253.13× 0.020684	= 5.24 kg
	 Water 	$= 224.52 \times 0.020684$	= 4.20 kg
	 Cement 	$= 308.33 \times 0.020684$	= 6.38 kg
h)	Requirement of co	oral reef admixture 50%	
	 Sand 	$= 722.71 \times 0.020684$	=14.95 kg
	 Gravel 	$= 532.05 \times 0.020684$	=11.00 kg
	 Coral Reef 	$=487.38 \times 0.020684$	= 10.08 kg
	 Water 	$= 224.52 \times 0.020684$	= 4.64 kg
	 Cement 	$= 308.33 \times 0.020684$	= 6.38 kg
i)	Requirement of co	oral reef admixture 60%	
	 Sand 	$=715.01 \times 0.020684$	= 14.79 kg
	 Gravel 	$=421.10 \times 0.020684$	= 8.71 kg
	 Coral reef 	$= 578.62 \times 0.020684$	= 11.97 kg
	 Water 	$= 232.94 \times 0.020684$	= 4.82 kg
	 Cement 	$= 308.33 \times 0.020684$	= 6.38 kg
j)	Requirement of co	oral reef admixture 75%	
	 Sand 	$= 700.00 \times 0.020684$	= 14.48 kg
	 Gravel 	$= 257.66 \times 0.020684$	= 5.33 kg
	 Coral reef 	$= 708.10 \times 0.020684$	= 14.65 kg
	 Water 	$= 224.91 \times 0.020684$	= 5.07 kg
	 Cement 	= 308.33× 0.020684	= 6.38 kg

Coral Reef		Aggre	egate	Water	Cement
Admixture	Sand	Gravel	Coral Reef	vv ater	
0%	16.06	23.65	0.00	3.71	6.38
25%	15.53	17.15	5.24	4.20	6.38
50%	14.95	11.00	10.08	4.64	6.38
60%	14.79	8.71	11.97	4.82	6.38
75%	14.48	5.33	14.65	5.07	6.38

Table 4.46 Material requirements of 30 x 15 cm test specimen

(Source: Author, 2024)

4.4 Slump Test Analysis

Slump tests are conducted on fresh concrete, with the aim of measuring the workability and uniformity of water usage in concrete.

1 Slump Test Specimen Age 14 Days

Table 4.47 Analysis of slump test specimen age 14 days

Specimen	Initial height (cm)	Final height (cm)	Slump Value (cm)
BK0	30	20.5	9.5
BK25	30	20	10
BK50	30	19	11
BK60	30	18.5	11.5
BK75	30	18	12

(Source: Author, 2024)

Calculation example:

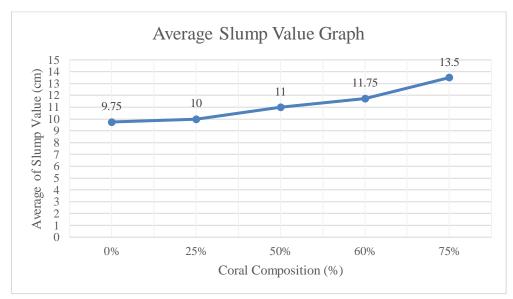
Slump value BK0 = Height of slump tool - Height of concrete after decrease Slump value <math>BK0 = 30 - 20.5 = 9.5 cm

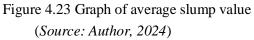
2 Slump Test Specimen Age 28 Days

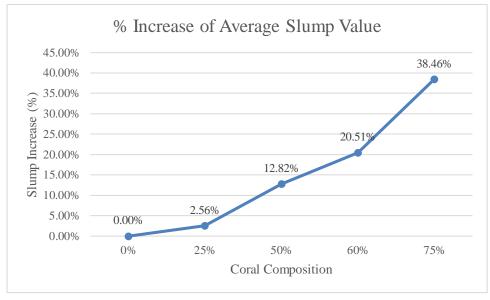
Table 4.48 Analysis of slump test specimen age 28 days

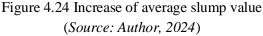
	Initial Height	Final Height	Slump Value
Specimen	(cm)	(cm)	(cm)
BK0	30	20	10
BK25	30	20	10
BK50	30	19	11
BK60	30	18	12
BK75	30	15	15

Calculation slump test is using equation 2.15:


Slump value BK0 = Height of slump tool – Height of concrete after decrease Slump value BK0 = 30 - 20 = 10 cm


3 Average Slump Value


Specimen	Slump Value		Shump Value Avanaga	Increase of
	14 Days	28 Days	Slump Value Average	Slump Average
BK0	9.5	10	9.75	0%
BK25	10	10	10	3%
BK50	11	11	11	13%
BK60	11.5	12	11.75	21%
BK75	12	15	13.5	38%


Table 4.49 Result of average slump value calculation

⁽Source: Author, 2024)

The results of the concrete slump test, it can be seen that each addition of coral reefs makes the slump value higher. However, the specified slump is 7.5 cm - 15 cm and the results of the study meet the requirements. The highest slump value was obtained in the 28-day BK75 specimen, with a value of 15 cm. In this study, the addition of coral reef aggregate to the concrete mix increased the slump value due to several factors:

- Coral aggregates have a shape that tends to be round compared to crushed gravel which has an angular shape. Coral aggregate has a shape that tends to be round because the coral aggregate itself is formed due to erosion by water or the whole is formed due to displacement. The use of round-shaped coarse aggregate results in easier concrete to work with (Tjokrodimuljo, 1996). The coarse aggregate texture reduces the degree of workability, but can improve the aggregate-cement bond and compressive strength of concrete (Scribd.com/Agregat Kasar, accesed 2024).
- The coral aggregates were stored outdoors due to limited storage space, while the crushed gravel was stored indoors. This study was conducted during the rainy season, which increased the moisture content of the coral aggregate. The increased moisture content of the coral aggregate increases the amount of water in the concrete. The more water used, the easier the concrete is to work with (Tjokrodimuljo, 1996).

4.5 Unit Weight Analysis

Mold Weight = 10 kg

Table 4.50 Fresh concrete unit weight calculation

				*		
Specimen	Age	Volume	Concrete + Mold	Unit Weight	Average	
specifien	Days	m³	kg	Kg/m³	Kg/m³	
BK0	14	0.005304	23.261	2500.189		
BK0	14	0.005304	23.301	2507.730	2496.669	
BK0	14	0.005304	23.165	2482.089		
BK0	28	0.005304	23.227	2493.778		
BK0	28	0.005304	22.884	2429.110	2451.609	
BK0	28	0.005304	22.899	2431.938		
BK25	14	0.005304	22.145	2289.781		
BK25	14	0.005304	22.706	2395.551	2335.093	
BK25	14	0.005304	22.305	2319.947		
BK25	28	0.005304	21.840	2232.278		
BK25	28	0.005304	21.942	2251.508	2301.848	
BK25	28	0.005304	22.845	2421.757		
BK50	14	0.005304	21.772	2219.457		
BK50	14	0.005304	22.506	2357.843	2305.870	
BK50	14	0.005304	22.413	2340.309		
BK50	28	0.005304	21.671	2200.415		
BK50	28	0.005304	22.165	2293.552	2290.410	
BK50	28	0.005304	22.609	2377.262		
BK60	14	0.005304	21.422	2153.469		
BK60	14	0.005304	22.233	2306.373	2244.407	
BK60	14	0.005304	22.058	2273.379		
BK60	28	0.005304	21.569	2181.184		
BK60	28	0.005304	21.924	2248.115	2269.796	
BK60	28	0.005304	22.624	2380.090		
BK75	14	0.005304	21.335	2137.066		
BK75	14	0.005304	21.430	2154.977	2135.307	
BK75	14	0.005304	21.212	2113.876		
BK75	28	0.005304	21.593	2185.709		
BK75	28	0.005304	21.500	2168.175	2141.088	
BK75	28	0.005304	20.976	2069.382		

Calculation example: Specimen BK01, the calculation uses equation 2.16

$$M_{c} = 23.261$$

$$M_{m} = 10.000$$

$$V_{m} = 0.005304$$

$$D = \frac{M_{c} - M_{m}}{V_{m}}$$

$$D = \frac{23.261 - 10.000}{0.005304} = \frac{13.261}{0.005304} = 2500.189 \text{ kg/m}^{3}$$

	Table 4.51	Calculation	of average	fresh conci	rete unit weight
--	------------	-------------	------------	-------------	------------------

Specimen	SNI 03- 2847-2002	Average Unit Weight	Percentage Decrease	Description
BK0	2200-2500	2474.139	0.00%	Qualified
BK25	2200-2500	2318.470	6.29%	Qualified
BK50	2200-2500	2298.140	7.11%	Qualified
BK60	2200-2500	2257.102	8.77%	Qualified
BK75	2200-2500	2138.198	13.58%	Unqualified
10 1 1	000 0			

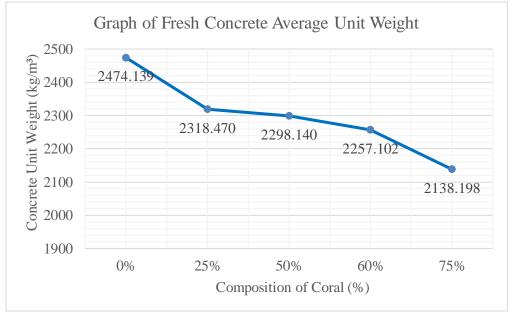


Figure 4.25 Graph of fresh concrete average unit weight (Source: Author, 2024)

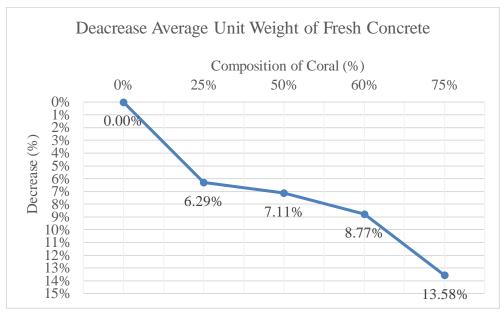


Figure 4.26 Graph of decrease fresh concrete average unit weight (Source: Author, 2024)

In testing the unit weight of fresh concrete, at 0%, 25%, 50%, 60% coral reefs composition, the unit weight values obtained are 2474.139 kg/m³, 2318.470 kg/m³, 2298.140 kg/m³, 2257.102 kg/m³, the weight content of concrete meets the requirements of SNI 03-2847-2002 where the weight content of normal concrete has a value of 2200-2500 kg/m³. At 75% coral reefs composition with an average content weight of 2135.307 kg/m³ does not meet the normal concrete content weight based on SNI 03-2847-2002, but this value is close to the normal concrete content weight.

In this research, it is concluded that the replacement of crushed gravel with coral aggregate make a decrease in unit weight of concrete, this is accordance with research Wesli et al. (2023). In this study, the decrease in the weight of concrete contents with increasing composition of coral aggregate is due to the fact that coral aggregate has a lighter relative density and volume weight compared to the relative density of crushed gravel, this is in accordance with research Widyawati (2011) the thing that makes concrete light is the specific gravity of concrete and the light volume weight of concrete. The large number of pores in the coral aggregate also affects the specific gravity of the concrete, the coral aggregate makes the concrete have many air voids in it, therefore, the density of the concrete decreases.

	Table 4.52 water absorption value, age 28 days							
		SSD Concrete	Dry	Water	Average			
No	Specimen	Weight	Weight	Absorption	(%)			
		(gram)	(gram)	(%	(70)			
1	BK0	3814	3646	4.608	4.381			
2	BK0	3861	3707	4.154	4.381			
3	BK25	3791	3616	4.840	5.399			
4	BK25	3681	3474	5.959	5.399			
5	BK50	3609	3420	5.526	5.474			
6	BK50	3675	3486	5.422	5.474			
7	BK60	3473	3214	8.058	9.290			
8	BK60	3393	3070	10.521	9.290			
9	BK75	3319	2961	12.091	12.067			
10	BK75	3349	2989	12.044	12.007			

4.6 Water Absorption Analysis

Table 4.52 Water absorption value, age 28 days

(Source: Author, 2024)

Calculation of water absorption carried out by using equation 2.17

Calculation Example: BK0

B = 3814

Absorption = $\left(\frac{B-A}{A}\right) \times 100\%$ Absorption = $\left(\frac{3814 - 3646}{3646}\right) \times 100\% = 4.60\%$

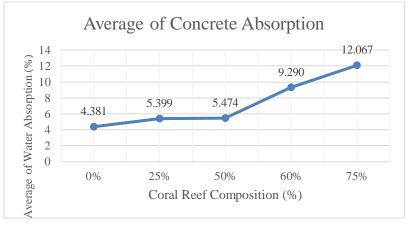
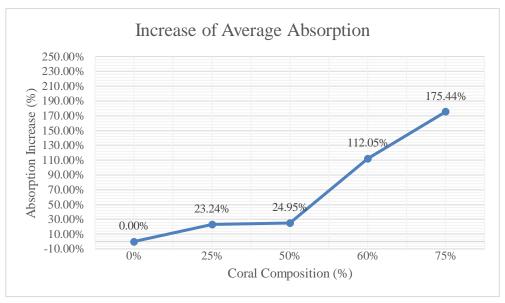
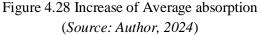




Figure 4.27 Graph of Average water absorption concrete (Source: Author, 2024)

From the results of the concrete water absorption test, it can be seen that the addition of coral aggregate makes the absorption value increase. The maximum water absorption value of concrete is in the BK75 specimen of 12.067%. Based on SNI 03-2914-1992, the maximum value of water absorption in test specimens-soaked 1×24 hours are 6.5%. In this research, the qualified absorption value is in the mixture of 0%, 25%, and 50% coral reef aggregate.

Based on Wang et al. (2023), corals have the disadvantage of high-waterabsorption. In this research, the coral aggregate used has many voids or pores, resulting in greater porosity of the concrete. The voids or pores of the coarse aggregate absorb the water that surrounds it (Sultan et al., 2018). High porosity aggregate affects the absorption value of concrete because it covers 70% of the weight of concrete, thus making concrete have a high absorption value (Widyawati, 2011).

Specimen	Age Days	Area (mm ²)	Pressure (kg)	Pressure (N)	Compressive Strength (N/mm ²)	Average (N/mm ²)
BK0	14	17678.57	18500	181423.03	10.262	
BK0	14	17678.57	19500	191229.68	10.817	10.355
BK0	14	17678.57	18000	176519.70	9.985	
BK0	28	17678.57	22983	225386.24	12.749	
BK0	28	17678.57	22472	220375.04	12.466	12.371
BK0	28	17678.57	21450	210352.64	11.899	
BK25	14	17678.57	17079	167487.78	9.474	
BK25	14	17678.57	17500	171616.38	9.708	9.537
BK25	14	17678.57	17000	166713.05	9.430	
BK25	28	17678.57	18500	181423.03	10.262	
BK25	28	17678.57	18500	181423.03	10.262	10.355
BK25	28	17678.57	19000	186326.35	10.540	
BK50	14	17678.57	13000	127486.45	7.211	
BK50	14	17678.57	20000	196133.00	11.094	8.598
BK50	14	17678.57	13500	132389.78	7.489	
BK50	28	17678.57	17000	166713.05	9.430	
BK50	28	17678.57	18000	176519.70	9.985	10.077
BK50	28	17678.57	19500	191229.68	10.817	
BK60	14	17678.57	15000	147099.75	8.321	
BK60	14	17678.57	17500	171616.38	9.708	8.598
BK60	14	17678.57	14000	137293.10	7.766	
BK60	28	17678.57	14000	137293.10	7.766	
BK60	28	17678.57	17500	171616.38	9.708	9.523
BK60	28	17678.57	20000	196133.00	11.094	
BK75	14	17678.57	12000	117679.80	6.657	
BK75	14	17678.57	14000	137293.10	7.766	8.043
BK75	14	17678.57	17500	171616.38	9.708	
BK75	28	17678.57	15000	147099.75	8.321	
BK75	28	17678.57	16000	156906.40	8.876	8.413
BK75	28	17678.57	14500	142196.43	8.043	

4.7 Compressive Strength Analysis

Table 4.53 Concrete Compressive Strength Analysis

Calculation of compressive strength is using equation 2.18 Calculation of specimen BK01

Concrete compressive strength = $\frac{P}{A}$ Concrete compressive strength = $\frac{181423.03}{17678.57}$ Concrete compressive strength = 10.262 N/mm²

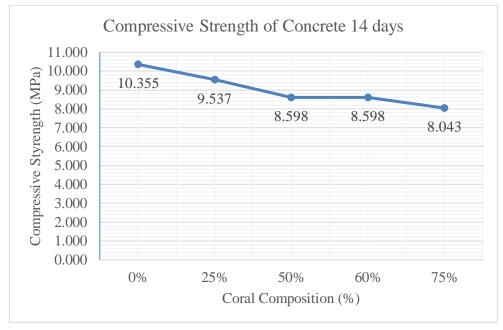


Figure 4.29 Graph of concrete compressive strength age 14 days (Source: Author, 2024)

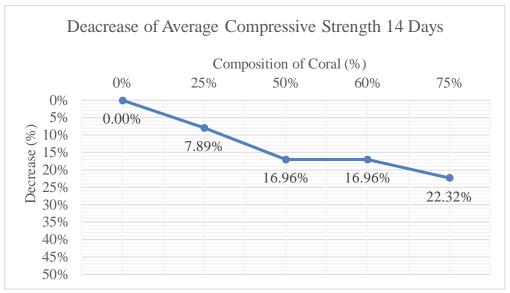


Figure 4.30 Graph of decrease compressive strength age 14 days (Source: Author, 2024)

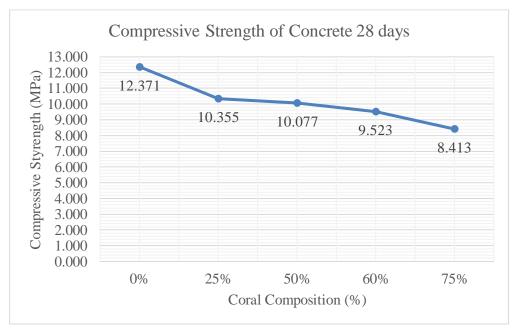


Figure 4.31 Graph of concrete compressive strength age 28 days (Source: Author, 2024)

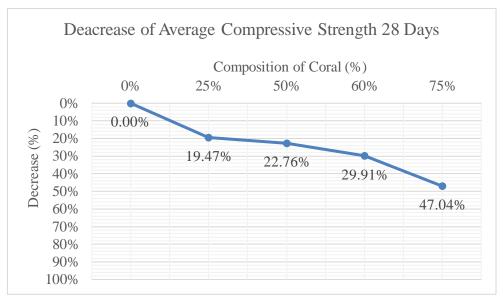


Figure 4.32 Graph of decrease concrete compressive strength age 28 days (Source: Author, 2024)



Figure 4.33 Graph of concrete compressive strength age 14 and 28 days (Source: Author, 2024)

From the results of the concrete compressive strength test, it can be seen that the resulting concrete compressive strength does not meet the target compressive strength of 14.5 MPa. The average compressive strength of 0% coral reefs is 12.371 MPa, at the age of 28 days, with the compressive strength value of each test specimen

1, 2, 3 sequentially equal to 11.899 MPa, 12.466 MPa, and 12.749 MPa. From these values it can be concluded that normal concrete without a mixture of coral reef meets the requirements. While concrete with the replacement of coral reefs as aggregate composition of 25%, 50%, 60%, and 75% does not meet the requirements and experienced a decrease in compressive strength with a sequential average compressive strength value of 10.355 MPa, 10.077 MPa, 9.523 MPa, and 8.413 MPa. From these compressive strength values, based on Kementrian PUPR (2019) the 25% and 50% concrete coral compositions meet the requirements of non-structural concrete used as a working floor and concrete backfill material (10 MPa \leq fc < 15 MPa). From the results of the study, it was concluded that the replacement of gravel using coral reefs made the concrete experience a decrease in concrete compressive strength, this is in accordance with research conducted by Wesli et al. (2023) dan Wang et al. (2023).

Based on Wang et al. (2023), coral has the disadvantage of high porosity. Porosity is the percentage of pores in aggregate or concrete. In this study, it was found that the greater the use of aggregates containing pores in concrete, the lower the compressive strength of the concrete, which is in accordance with the research conducted by Shandy & Hermanto (2019). Increasing the percentage of coarse coral aggregate makes the concrete decrease linearly, this is in accordance with the research conducted by Wang et al. (2023). The decrease in compressive strength of concrete using coral aggregate is due to the poorer characteristics of coral aggregate compared to crushed gravel. The characteristics of coral aggregate that make the quality of concrete decrease are:

- Coral aggregate has a smaller relative density than crushed gravel, and a higher absorption value than crushed gravel. The greater the specific gravity of the aggregate, the higher the water absorption, indicating that the aggregate grains are denser and stronger (Sulistyawati, 2009). The relative density of the aggregate also affects the abrasion value of the aggregate, where the smaller the relative density of the aggregate, the greater the abrasion value.
- Coral aggregate affects the water absorption value of concrete because coral aggregate has a high porosity and absorption value. The large number of voids in the coral aggregate results in a large number of voids in the concrete. The correlation between porosity and compressive strength is that the greater the porosity in the test specimen, the lower the strength of the concrete (Sultan et al., 2018).
- The shape of coral aggregates tends to be more rounded than that of angular crushed gravel. Concrete with rounded aggregates has less strong intergranular bonds, whereas concrete with angular coarse aggregates has good or strong intergranular bonds (Tomayahu, 2016).

 Silt content of the coral aggregate. Materials that contain a lot of mud or dust should be avoided because the grains are so fine that they have less hardness. The hardness of the filler material will affect the hardness of the concrete (Joni, 2011).

4.7.1 Factors Affecting The Strength that Does Not Reach The Target

From the results of the concrete compressive strength test, it can be seen that the resulting concrete compressive strength does not meet the desired compressive strength of 14.5 MPa. The compressive strength did not reach the plan quality in this study may be due to several factors:

• The grade of the coarse aggregate used is not well distributed.

A good aggregate to use in concrete is one in which all grain sizes are well distributed, called a continuous grade aggregate. Well-distributed aggregates create small pore numbers and high compressibility, leading to good interlocking. Concrete will produce dense, high quality concrete if it is made from materials that have good aggregate grade (Joni, 2011). Based on research Bangki (2020), Concrete using continuous aggregates has a higher compressive strength than concrete using uniform aggregates.

• How to compact concrete

In this study, the compaction of concrete was carried out by means of corners. With this way will obtain limited density result, therefore that the quality of concrete is also limited, the denser the concrete, the higher the quality. Concrete compaction using cornering makes the grains shake their balance so that they move one against the other looking for a new denser balance. (Joni, 2011). Compaction is recommended using a vibrating needle or vibrating harmer (formwork). This method produces greater energy and higher compaction power, resulting in better concrete.

4.7.2 Evaluation and Acceptance of Unsatisfactory Compressive Strength

In this section, the decision to accept concrete with unsatisfactory compressive strength is explained. Based on SNI 2847-2013:

- the average compressive strength of the 3 core concretes is $\geq 85\%$ of the f'c
- And none of the core concretes had compressive strength < 75% of f'c.

By using the f c = 14.5 MPa, then 85% f c = 12.325 MPa and 75% f c = 10.875 MPa. The average compressive strength of 0% coral reefs is 12.371 MPa, at the age of 28 days, with the compressive strength value of each test specimen 1, 2, 3 sequentially equal to 11.899 MPa, 12.466 MPa, and 12.749 MPa. It is concluded that normal concrete quality is considered eligible.

"This page is intentionally left blank"