
ALTERNATIF DESAIN STRUKTUR GEDUNG UNIVERSITAS MUHAMMADIYAH LAMONGAN MENGGUNAKAN DUAL STEEL SYSTEM ECCENTRICALLY BRACED FRAMES TAHAN GEMPA

Disusun Oleh : <u>AHMAD ATHOILLAH SYAICHUL GHULAM</u> NIM : 1431800144

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA

2023

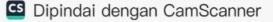
ALTERNATIF DESAIN STRUKTUR GEDUNG UNIVERSITAS MUHAMMADIYAH LAMONGAN MENGGUNAKAN *DUAL STEEL SYSTEM* ECCENTRICALLY BRACED FRAMES TAHAN GEMPA

Disusun Oleh :

AHMAD ATHOILLAH SYAICHUL GHULAM NIM : 1431800144

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA

2023


ALTERNATIF DESAIN STRUKTUR GEDUNG UNIVERSITAS MUHAMMADIYAH LAMONGAN MENGGUNAKAN *DUAL STEEL SYSTEM* ECCENTRICALLY BRACED FRAMES TAHAN GEMPA

Disusun Sebagai Syarat Meraih Gelar Sarjana Teknik (S.T) Universitas 17 Agustus 1945 Surabaya

Disusun Oleh : AHMAD ATHOILLAH SYAICHUL GHULAM 1431800144

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA 2023

ALTERNATIF DESAIN STRUKTUR GEDUNG UNIVERSITAS MUHAMMADIYAH LAMONGAN MENGGUNAKAN *DUAL STEEL SYSTEM* ECCENTRICALLY BRACED FRAMES TAHAN GEMPA

Disusun Sebagai Syarat Meraih Gelar Sarjana Teknik (S.T) Universitas 17 Agustus 1945 Surabaya

Disusun Oleh : AHMAD ATHOILLAH SYAICHUL GHULAM 1431800144

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA 2023

PENGESAHAN STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS 17 AGUSTUS 1945 SURABAYA

LEMBAR PENGESAHAN TUGAS AKHIR

Nama	:	Ahmad Athoillah Syaichul Ghulam		
NBI	:	1431800144		
Program Studi	:	Teknik Sipil		
Fakultas	:	Teknik		
Judul	:	Alternatif Desain Struktur Gedung Universitas Muhammadiyah Lamongan Menggunakan <i>Dual</i> <i>Steel System Eccentrically Braced Frame</i> Tahan Gempa		

Di Setujui Oleh : Dosen Pembimbing

Ir. Bantot Sutriono, M.Sc. NPP. 20430.93.0303

Mengetahui :

i

Dekan Fakultas Teknik Universitas 17 Agustus 1945 AGUSHFABAYA Dr. Ir.H.Saliyo, M.Kes. IPU., ASEAN Eng. NPP. 20410.90.0197

Ketua Program Studi Teknik Sipil Universitas 17 Agustus 1945 Surabaya

Faradlillah Saves, S.T., M.T. NPP. 20430.15.0674

SURAT PERNYATAAN KEASLIAN DAN KESETUJUAN PUBLIKASI TUGAS AKHIR

Saya yang bertanda tangan di bawah ini :Nama: Ahmad Athoillah Syaichul GhulamNBI: 1431800144Alamat: Jl. Dusun Ngasin RT.002 / RW.001,Balongpanggang GresikTelepon/HP: 081334370807

Menyatakan bahwa "Tugas Akhir" yang penulis buat untuk memenuhi pernyataan kelulusan Sarjana Teknik Sipil-Universitas 17 Agustus 1945 Surabaya dengan judul :

"Alternatif Desain Struktur Gedung Universitas Muhammadiyah Lamongan Menggunakan Dual Steel System Eccentrically Braced Frame Tahan Gempa"

Adalah hasil karya saya sendiri dan bukan duplikasi dari karya orang lain. Selanjutnya apabila dikemudian hari klaim dari pihak lain bukan tanggung jawab pembimbing dan atau pengelola program, tetapi menjadi tanggung jawab saya sendiri.

Atas hal tersebut saya bersedia menerima sanksi, sesuai dengan hukum atau aturan yang berlaku di Indonesia.

Demikian surat pernyataan ini saya buat dengan sebenarnya tanpa paksaan siapapun.

Surabaya, 4 Juli 2023

Ahmad Athoillah Syaichul Ghulam

UNIVERSITAS 17 AGUSTUS 1945 SURABAYA BADAN PERPUSTAKAAN JI. SEMOLOWARU 45 SURABAYA TELP. 031 593 1800 (Ext. 311) e-mail : perpus@untag-sby.ac.id

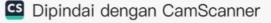
LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai Civitas Akademik Universitas 17 Agustus 1945 Surabaya, saya yang bertanda tangan di bawah ini:

Nama	: Ahmad Athoillah Syaichul Ghulam
NBI/ NPM	: 1431800144
Fakultas	: Teknik
Program Studi	: Teknik Sipil
Jenis Karya	: Skripsi/ Tesis/ Disertasi/ Laporan Penelitian/Praktek*

Demi perkembangan ilmu pengetahuan, saya menyetujui untuk memberikan kepada Badan Perpustakaan Universitas 17 Agustus 1945 Surabaya Hak Bebas Royalti Nonekslusif (Nonexclusive Royalty-Free Right), atas karya saya yang berjudul:

"Alternatif Desain Struktur Gedung Universitas Muhammadiyah Lamongan Menggunakan Dual Steel System Eccentrically Braced Frame Tahan Gempa"


Dengan Hak Bebas Royalti Nonekslusif (Nonexclusive Royalty - Free Right), Badan Perpustakaan Universitas 17 Agustus 1945 Surabaya berhak menyimpan, mengalihkan media atau memformatkan, mengolah dalam bentuk pangkalan data (database), merawat, mempublikasikan karya ilmiah saya selama tetap tercantum

Dibuat di : Universitas 17 Agustus 1945 Surabaya Pada tanggal : 4 Juli 2023

Yang Menyatakan,

Ahmad Athoillah Syaichul Ghulam

*Coret yang tidak perlu

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas rahmat dan hidayahnya sehingga penulis dapat menyelesaikan Tugas Akhir ini yang berjudul "Alternatif Desain Struktur Gedung Universitas Muhammadiyah Lamongan Menggunakan Dual System Eccentrically Braced Frame Tahan Gempa" dengan baik.

Tugas Akhir ini diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Teknik (S.T) studi pada Program studi Strata Satu (S1) Jurusan Teknik Sipil Fakultas Teknik Universitas 17 Agustus 1945 Surabaya, dan juga untuk memperdalam displin Ilmu Teknik Sipil yang diperoleh penulis selama di bangku perkuliahan.

Dalam menyusun Tugas Akhir ini tidak lepas dari bantuan serta bimbingan dari berbagai pihak. Untuk itu pada kesempatan ini penulis ingin menyampaikan ucapan terima kasih kepada:

- 1. Dr. Mulyanto Nugroho ,MM., CMA., CPAI Selaku Rektor Universitas 17 Agustus 1945 Surabaya.
- 2. Dr. Ir. H. Sajiyo, M.Kes IPU., ASEAN Eng. Selaku Ketua Dekan Fakultas Teknik Universitas 17 Agustus 1945 Surabaya.
- 3. Faradillah Saves, S.T., M.T. selaku Ketua Program Studi Teknik Sipil Fakultas Teknik Universitas 17 Agustus 1945 Surabaya.
- 4. Ir. Bantot Sutriono, M.Sc. Selaku Dosen Pembimbing yang telah banyak meluangkan waktu dan tenaga untuk membimbing penulis selama penyusunan Tugas Akhir.
- 5. Bapak dan Ibu Dosen yang memberikan bekal ilmu yang bermanfaat selama penulis mengikuti perkuliahan.
- 6. Orang Tua saya, Ayah dan Ibu tercinta yang selalu memberikan dukungan Moral,Materi dan Doa.
- 7. Saudari saya, paman dan bibi saya, yang juga selalu memberikan dukungan Moral dan Doa,
- 8. Teman terdekat yang selalu memberikan dukungan,Doa dan membantu proses penulisan Tugas Akhir Ini.
- 9. Teman-teman jurusan Teknik Sipil angkatan 2018.

Penulis menyadari bahwa dalam penyusunan Tugas Akhir ini masih jauh kata sempurna sehingga terdapat kesalahan dan kekurangan, baik dari isi maupun redaksi yang penulis gunakan. Oleh karena itu saran dan kritik dari segala pihak guna untuk menyempurnakan Tugas Akhir ini. Akhir kata penulis berharap Tugas Akhir ini dapat memberikan manfaat bagi penulis sendiri maupun dari berbagai pihak khususnya para pembaca pada umumnya.

Surabaya, 4 Juli 2023 Penulis

Ahmad Athoillah Syaichul Ghulam NBI: 1431800144

ALTERNATIF DESAIN STRUKTUR GEDUNG UNIVERSITAS MUHAMMADIYAH LAMONGAN MENGGUNAKAN *DUAL STEEL SYSTEM ECCENTRICALLY BRACED FRAMES* TAHAN GEMPA

Nama	: Ahmad Athoillah Syaichul Ghulam
NBI	: 1431800144
Program Studi	: Teknik Sipil
Dosen Pembimbing	: Ir. Bantot Sutriomo, M.Sc.

ABSTRAK

Pada penelitian ini dilakukan desain alternatif Universitas Muhammadiyah Lamongan menggunakan struktur baja tahan gempa dengan *dual system eccentrically braced frame* (system ganda struktur baja bresing eksentrik) Desain eksisting Universitas Muhammadiyah Lamongan menggunakan struktur beton dengan sistem struktur *shearwall*. Struktur baja dipilih sebagai alternatif desain karena material baja memiliki daktilitas yang lebih baik dan bobot yang lebih rendah daripada beton, dimana hal tersebut baik untuk bangunan tahan gempa.

Universitas Muhammadiyah Lamongan akan dirancang menggunakan sistem ganda yaitu sistem rangka pemikul momen khusus dan sistem rangka bresing eksentris sesuai dengan ketentuan SNI 1726: 2019 tentang perencanaan struktur tahan gempa, SNI 1729: 2020 tentang struktur baja bangunan, SNI 7860:2020 tentang struktur baja tahan gempa dan SNI 7972:2020 tentang sambungan struktur baja pemikul momen khusus

Dari hasil desain, dimensi profil penampang baja yang digunakan sebagai balok adalah WF 500.200, WF 450.200, WF 400.200, WF 396.198, dan WF 350.175. Sedangkan untuk profil kolom penampang adalah KC 800.300, K700.300, K588.300, K600.200, dan K500.200. Dari perhitungan perbandingan diperoleh untuk gedung alternatif level kinerja yaitu *immediate occupancy* (IO) dengan biaya total struktur gedung alternatif Rp. 40.407.272.501,975 sedangkan untuk gedung *existing* level kinerja yaitu *life safety* (LS) dengan biaya total struktur gedung alternatif Rp. 20.173.463.955,860

Kata Kunci: Sistem Ganda, Struktur Baja, Bresing Eksentrik

ALTERNATIVE STRUCTURE DESIGN OF MUHAMMADIYAH LAMONGAN UNIVERSITY BUILDING USING FRAMES EARTHQUAKE RESISTANT DUAL STEEL SYSTEM ECCENTRICALLY BRACED

Nama	: Ahmad Athoillah Syaichul Ghulam
NBI	: 1431800144
Program Studi	: Teknik Sipil
Dosen Pembimbing	: Ir. Bantot Sutriomo, M.Sc.

ABSTRACT

In this research, an alternative design was carried out at Muhammadiyah Lamongan University using an earthquake resistant steel structure with *dual system* eccentrically braced frame (double system eccentric bracing steel structure) The existing design of the University of Muhammadiyah Lamongan uses a concrete structure with a structural systemshearwall. Steel structure was chosen as an alternative design because steel material has better ductility and lower weight than concrete, which is good for earthquake resistant buildings.

Muhammadiyah University of Lamongan will be designed using a double system, namely a special moment-bearing frame system and an eccentrically braced frame system in accordance with the provisions of SNI 1726: 2019 concerning earthquake resistant structural planning, SNI 1729: 2020 concerning steel structures of buildings, SNI 7860: 2020 concerning earthquake resistant steel structures and SNI 7972:2020 concerning special moment-bearing steel structure joints

From the design results, the dimensions of the steel cross-sectional profiles used as beams are WF 500,200, WF 450,200, WF 400,200, WF 396,198, and WF 350,175. As for the profile column sections are KC 800,300, K700,300, K588,300, K600,200, and K500,200. From the comparison calculation, it is obtained for the alternative level performance building, namely *immediate occupancy* (IO) with a total cost of an alternative building structure of Rp. 40,407,272,501.975 while for the building *existing* performance level ie*life safety* (LS) with a total cost of an alternative building structure of Rp. 20,173,463,955,860

Keywords: Dual System, Steel Structures, Eccentrically Braced Frame

DAFTAR ISI

LEMBAI	R PENGESAHANi
SURAT I	PERNYATAAN KEASLIAN DAN KESETUJUAN PUBLIKASIii
LEMBA	R PERNYATAAN PERSETUJUAN PUBLIKASIiii
KATA P	ENGANTAR iv
ABSTRA	٠Kvi
ABSTRA	vii
DAFTAF	R ISIviii
DAFTAF	R GAMBAR xiv
DAFTAF	R TABEL xvii
DAFTAF	R NOTASI xx
BAB I	
PENDAH	IULUAN 1
1.1	Latar Belakang Masalah 1
1.2	Rumusan Masalah
1.3	Tujuan 4
1.4	Batasan Masalah
1.5	Manfaat
BAB II	
LANDAS	SAN TEORI
2.1	Penelitian Terdahulu7
2.2	Sistem Rangka Pemikul Momen Khusus (SRPMK) 10
2.2.1	Pengertian Sistem Rangka Pemikul Momen Khusus (SRPMK) 10
2.2.2	2 Persyaratan <i>Strong Column Weak Beam</i> (SCWB)11
2.3	Sistem Rangka Bresing Eksentris (SRBE)
2.3.1	Pengertian Sistem Rangka Bresing Eksentris (SRBE)
2.3.2	2 Perencanaan Balok <i>Link</i>
2.4	Dual System Eccentriccally Braced Frame
2.5	Pembebanan Pada Struktur

2.5.1	Beban Mati	18
2.5.2	Beban Hidup	18
2.5.3	Beban Angin	19
2.5.4	Beban Gempa	19
2.5.5	Kombinasi Pembebanan	28
2.6 Peri	llaku Struktur Pada Saat Terjadi Gempa	28
2.6.1	Partisipasi Massa Pada Struktur	28
2.6.2	Periode Getar Fundamental Pada Struktur	28
2.6.3	Gaya Geser Dasar Seismik Pada Struktur	29
2.6.4	Sistem Ganda Pada Struktur	30
2.6.5	Simpangan Pada Struktur	30
2.6.6	Pengaruh <i>P-Delta</i> Pada Struktur	31
2.7 Perc	encanaan Elemen Struktur Baja	32
2.7.1	Perencanaan Struktur Elemen Tarik	32
2.7.2 P	erencanaan Struktur Elemen Tekan	33
2.7.3	Perencanaan Struktur Elemen Lentur	36
2.7.4	Perencanaan Struktur Elemen Pemikul Gaya Aksial dan Lentur	41
2.7.5	Perencanaan Struktur Elemen Geser	42
2.7.6	Perencanaan Struktur Elemen Geser dan Elemen Lentur	43
2.7.7	Perencanaan Penghubung Geser (Shear Connector)	43
2.8 Ana	lisis Level Kinerja Statik Nonlinear (Pushover)	44
2.10.1	Kinerja Struktur Metode ATC-40	45
2.9.2	Kinerja Struktur Metode FEMA-356	48
2.9.3	Kinerja Struktur Metode FEMA-440	49
2.9 Pere	encanaan Sambungan	51
2.9.4	Sambungan Balok – Kolom	51
2.9.2	Sambungan Balok Anak – Balok Induk	61
2.9.3	Sambungan Base Plate dan Angkur	62
2.10 Pere	encanaan Pondasi Tiang Pancang	73
2.10.2	Kapasitas Dukung Ujung Tiang Pancang	73

2.10).3	Kapasitas Dukung Selimut Tiang Pancang	73
2.10).4	Kapasitas Dukung <i>Ultimate</i> Tiang Pancang	74
2.10).5	Kapasitas Dukung Kelompok Tiang Pancang	74
BAB III .	•••••		77
METOD	OLOC	GI PENELITIAN	77
3.1	Diag	ram Alir	77
3.2	Peng	umpulan Data	79
3.2.	1	Data Perencanaan Gedung <i>Existing</i>	79
3.2.2	2	Gambar Perencanaan	79
3.2.3	3	Data Penyelidikan Tanah	80
3.2.4	4	Studi Literatur	81
3.3	Prelin	minary Design Gedung Alternatif	81
3.4	Anali	isa Pembebanan	82
3.4.	1	Beban Mati	82
3.4.2	2	Beban Hidup	83
3.4.3	3	Beban Angin	83
3.4.4	4	Beban Gempa	83
3.5	Peren	ncanaan Struktur Sekunder	84
3.5.	1	Pelat lantai	84
3.5.2	2	Balok Anak	84
3.6	Pemo	odelan dan Analisa Struktur	84
3.6.	1	Pemodelan Struktur	84
3.6.2	2	Kontrol Struktur	85
3.7	Desai	in Struktur Primer	85
3.7.	1	Elemen Balok	85
3.7.2	2	Elemen Kolom	86
3.7.3	3	Elemen <i>Link</i>	87
3.7.4	4	Elemen Bresing	87
3.7.5	5	Dual System Eccentrically Braced Frame	87
3.8	Anali	isa Kinerja <i>Pushover</i>	87

3.9	Desain Sambungan Struktur	87
3.9.	1 Sambungan Balok Induk-Kolom	88
3.10	Desain Pondasi dan Pilecap	89
3.11	Perhitungan Biaya Struktur Alternatif dan Existing	89
3.12	Gambar Hasil Alternatif Desain	89
3.13	Perhitungan dan Perbandingan Gedung Alternatif dan Existing	90
3.14	Kesimpulan	90
BAB IV		91
ANALIS	A DAN PEMBAHASAN	91
4.1	Pengumpulan Data	91
4.2	Preliminiary Design	91
4.2.	1 Deskripsi Gedung	91
4.2.	2 Data Material	91
4.2.	3 Desain Penampang Balok	92
4.2.	4 Desain Penampang Kolom	94
4.2.	5 Desain Bresing	94
4.3	Pembebanan Struktur	95
4.3.	1 Beban Mati (<i>Dead Load</i>)	95
4.3.	2 Beban Hidup (<i>Live Load</i>)	96
4.3.	3 Beban Angin (<i>Wind Load</i>)	97
4.3.	4 Beban Gempa (<i>Earthquake Load</i>)	100
4.4	Pemodelan Struktur	110
4.4.	1 Pemodelan Elemen dan Tumpuan Struktur	114
4.5	Kontrol Perilaku Struktur	115
4.5.	1 Kontrol Partisipasi Massa	115
4.5.	2 Kontrol Periode Getar Fundamental	116
4.5.	3 Kontrol Nilai Akhir Respon Spektrum	118
4.5.	4 Kontrol Sistem Ganda	122
4.5.	5 Kontrol Simpangan Antar Tingkat	127
4.5.	6 Kontrol Pengaruh P – Delta (P - Δ)	133

4.6 Ana	alisis Gaya Dalam Struktur	
4.6.1	Analisis Gaya Dalam Struktur Pada ETABS	
4.6.2	Input Gaya Dalam Struktur	
4.6.3	Output Gaya Dalam Struktur	
4.6.4	Penyajian Gaya Dalam Struktur	
4.7 Per	encanaan Struktur Sekunder	144
4.7.1	Desain Pelat	144
Beban H	lidup :	
Beban b	erguna :	145
4.7.1.2	Desain Pelat Atap	146
Beban m	nati :	146
Beban H	lidup :	146
Beban b	erguna :	146
4.8 Per	encanaan Struktur Primer	
4.8.1	Balok Induk Interior Arah X (Lantai 1-4)	
4.8.2	Balok Induk Interior Arah Y (Lantai 1-4)	
4.8.3	Balok Induk Eksterior Arah X (Lantai 1-4)	
4.8.4	Balok Induk Eksterior Arah Y (Lantai 1-4)	
4.8.5	Balok Link Arah X	
4.8.6	Balok Link Arah Y	
4.8.7	Balok Bresing Arah X	
4.8.8	Balok Bresing Arah Y	
4.8.9	Kolom	
4.8.10	Persyaratan SCWB (Strong Column Weak Beam)	
4.9 Lev	el Kinerja Struktur	222
4.9.1	Kurva kapasitas Pushover	222
4.9.2	Level Kinerja dengan Metode FEMA 440	226
4.10 Per	encanaan Sambungan	
4.10.1	Sambungan Balok Anak – Induk	
4.10.2	Sambungan Balok Induk – Kolom	

4.10	0.3 Sambungan Bresing	
4.10	0.4 Sambungan <i>Base Plate</i>	
4.11	Perencanaan Struktur Bawah	
4.11	.1 Perencanaan Pondasi Tiang Pancang	
4.11	.2 Perencanaan Kolom Pedestal	
4.12	Perencanaan Anggaran Biaya	
4.12	.1 Rencana Anggaran Biaya Gedung Alternatif	
4.12	.2 Rencana Anggaran Biaya Gedung <i>Existing</i>	
BAB V		
KESIMP	ULAN	
5.1	Kesimpulan	
5.2	Saran	
DAFTAR	R PUSTAKA	

DAFTAR GAMBAR

Gambar 2. 1 Perilaku inelastis sistem rangka pemikul momen)
Gambar 2. 2 Momen maksimum balok pada sendi plastis	
Gambar 2. 3 Momen lentur balok pada sendi plastis di sumbu kolom	
Gambar 2. 4 Tipe Konfigurasi SRBE	
Gambar 2. 5 Gaya dalam Link	
Gambar 2. 6 Sudut Perputaran pada Link	
Gambar 2. 7 Gaya Geser Tiap Lantai pada Sistem Ganda dengan Bresing Eksentrik	
	5
Gambar 2. 8 Kurva Histerisis Balok Link yang Dibebani Geser	
Gambar 2. 9 Spektrum Respons Desain	
Gambar 2. 10 Peta Transisi Periode Panjang T _L , Wilayah Indonesia	
Gambar 2. 11 Simpangan Antar Tingkat	
Gambar 2. 12 Tipikal Kurva Kapasitas Pada Berbagai Tingkat Kinerja Struktur 45	
Gambar 2. 13 Ilustrasi Perancangan Berbasis Kinerja	
Gambar 2. 14 (a) Kurva Kapasitas (b) Spektrum Kapasitas	
Gambar 2. 15 Perilaku Pasca Leleh Struktur (FEMA 356)	
Gambar 2. 16 Konfigurasi Pelat Ujung Diperpanjang	
Gambar 2. 17 Distribusi tegangan persegi eksentrisitas kecil	
Gambar 2. 18 Distribusi tegangan persegi eksentrisitas besar	
Gambar 2. 19 Lebar efektif pelat pemikul baut angkur	
Gambar 2. 20 Beton jebol akibat Tarik	
Gambar 2. 21 Baut angkur tercabut dari betonnya	
Gambar 2. 22 Kuat ambrol muka tepi beton	
Gambar 2. 23 Kerusakan geser pada baut angkur	
Gambar 2. 24 Beton jebol terhadap geser	
Gambar 3. 1 Diagram Alur	3
Gambar 3. 2 Denah Balok	
Gambar 3. 3 Tampak Potongan Samping	
Gambar 3. 4 Denah Gambar Struktur Gedung Alternatif	
č	
Gambar 4. 1 Respon Spektra Pada Aplikasi RSA 2019 107	7
Gambar 4. 2 Grafik Beban Gempa Respon Spektrum Pada RSA 2019 109	
Gambar 4. 4 Pemodelan Denah Struktur Alternatif Pada ETABS	
Gambar 4. 5 Pemodelan Struktur Alternatif Tampak Samping Arah X 111	
Gambar 4. 6 Pemodelan Struktur Alternatif Tampak Samping Arah Y 112	
Gambar 4. 7 Pemodelan 3D Struktur Alternatif	
Gambar 4. 8 Perhitungan Simpangan Antar Tingkat 127	
Gambar 4. 9 Grafik Simpangan Arah X 130	

Gambar 4. 10 Grafik Simpangan Arah Y	
Gambar 4. 11 Grafik P-Delta Arah X	
Gambar 4. 12 Grafik P-Delta Arah Y	137
Gambar 4. 13 Input Beban Pada Balok di ETABS	138
Gambar 4. 14 Input Beban Pada Pelat di ETABS	139
Gambar 4. 15 Proses Running Gaya Dalam di ETABS	139
Gambar 4. 16 Pemilihan Tabel untuk Gaya Dalam	
Gambar 4. 17 Output Gaya Dalam di ETABS	140
Gambar 4. 18 Output Gaya Dalam di Excel	141
Gambar 4. 19 Gaya Dalam Balok Interior Arah-X	
Gambar 4. 20 Gaya Dalam Balok Interior Arah-Y	142
Gambar 4. 21 Gaya Dalam Balok Eksterior Arah-X	
Gambar 4. 22 Gaya Dalam Balok Eksterior Arah-Y	
Gambar 4. 23 Gaya Dalam Balok Link Arah-X	
Gambar 4. 24 Gaya Dalam Balok Link Arah-Y	144
Gambar 4. 25 Balok Interior Arah-X	148
Gambar 4. 26 Diagram Gaya Dalam Balok Interior Arah-X	148
Gambar 4. 27 Balok Interior Arah –Y	
Gambar 4. 28 Diagram Gaya Dalam Balok Interior Arah-Y	157
Gambar 4. 29 Balok Eksterior Arah-X	
Gambar 4. 30 Diagram Gaya Dalam Balok Interior Arah-X	165
Gambar 4. 31 Balok Eksterior Arah-Y	174
Gambar 4. 32 Diagram Gaya Dalam Balok Eksterior Arah-Y	174
Gambar 4. 33 Balok Link Arah-X	183
Gambar 4. 34 Diagram Gaya Dalam Balok Link Arah-X	
Gambar 4. 35 Balok Link Arah-Y	190
Gambar 4. 36 Diagram Gaya Dalam Balok Link Arah-Y	190
Gambar 4. 37 Bresing Arah-X	197
Gambar 4. 38 Diagram Gaya Dalam Bresing Arah-X	197
Gambar 4. 39 Balok Bresing Arah-Y	
Gambar 4. 40 Diagram Gaya Dalam Balok Bresing Arah-Y	204
Gambar 4. 41 Kolom	211
Gambar 4. 42 Diagram Gaya Dalam Kolom	211
Gambar 4. 43 Grafik Kurva Kapasitas Arah-X	223
Gambar 4. 44 Leleh Saat Step Pertama Pada Sendi Plastis Arah-X	223
Gambar 4. 45 Leleh Saat Performance Point Pada Sendi Plastis Arah-X	224
Gambar 4. 46 Leleh Saat Step Terakhir Pada Sendi Plastis Arah-X	224
Gambar 4. 47 Grafik Kurva Kapasitas Arah-Y	
Gambar 4. 48 Leleh Saat Step Pertama Pada Sendi Plastis Arah-Y	226
Gambar 4. 49 Leleh Saat Performance Point Pada Sendi Plastis Arah-Y	

Gambar 4. 50 Leleh Saat Step Terakhir Pada Sendi Plastis Arah-X	226
Gambar 4. 51 Hasil Calculated Value Pada Grafik Kurva Kapasitas Arah-X Se	suai
FEMA 440. (Sumber: Kajian Penulis, 2023)	226
Gambar 4. 52 Hasil Calculated Value Pada Grafik Kurva Kapasitas Arah-Y Se	suai
FEMA 440. (Sumber: Kajian Penulis, 2023)	227
Gambar 4. 53 Kolom Pedestal	254

DAFTAR TABEL

Tabel 2. 1 Penelitian terdahulu	. 7
Tabel 2. 2 Penelitian Terdahulu (lanjutan)	
Tabel 2. 3 Penelitian Terdahulu (lanjutan)	. 9
Tabel 2. 4 Kategori Resiko Bangunan Gedung untuk Beban Gempa	20
Tabel 2. 5 Faktor Keutamaan Gempa	21
Tabel 2. 6 Klasifikasi Situs Tanah	
Tabel 2. 7 Koefisien Situs, Fa Untuk Menentukan Ss	23
Tabel 2. 8 Kategori Lokasi Fv Untuk Menentukan Nilai S1	23
Tabel 2. 9 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan	
Pada Periode Pendek	26
Tabel 2. 10 Kategori Desain Seismik Berdasarkan Parameter Respons Percepatan	
Pada Periode 1,0 detik	27
Tabel 2. 11 Kategori Desain Gempa (KDG) dan Resiko Kegempaan	27
Tabel 2. 12 Faktor R, C _d , dan Ω_0 untuk Sistem Penahan Gaya Gempa	27
Tabel 2. 13 – Koefisien untuk batas atas pada periode yang dihitung	29
Tabel 2. 14 Penentuan nilai Ct dan x	29
Tabel 2. 15 Klasifikasi Penampang untuk Elemen Tekan	33
Tabel 2. 16 Klasifikasi Penampang untuk Elemen Lentur	39
Tabel 2. 17 Nilai Rg dan Rp untuk angkur baja stad berkepala	44
Tabel 2. 18 Level Kinerja Struktur	
Tabel 2. 19 Koefisien Faktor Modifikasi Co FEMA 356	
Tabel 2. 20 Koefisien Faktor Modifikasi C ₂ FEMA 356	50
Tabel 2. 21 Pembatasan Parametrik pada Prakualifikasi	52
Tabel 2. 22 Parameter Mekanisme Garis Leleh Pelat Ujung Diperpanjang Tanpa	
pengaku Dengan Empat Baut	54
Tabel 2. 23 Parameter Mekanisme Garis Leleh Pelat Ujung Diperpanjang Dengan	
Pengaku Dengan Empat Baut	55
Tabel 2. 24 Parameter Mekanisme Garis Leleh Pelat Ujung Diperpanjang Dengan	
pengaku Dengan Delapan Baut	55
Tabel 2. 25 Parameter Mekanisme Garis Leleh Sayap Kolom Diperpanjang Dengan	n
· · · · · · · · · · · · · · · · · · ·	58
Tabel 2. 26 Parameter Mekanisme Garis Leleh Sayap Kolom Yang Diperpanjang :	59
Tabel 4. 1 Preliminiary Design Balok Induk Arah X	92
Tabel 4. 2 Preliminiary Design Balok Induk Arah Y	
Tabel 4. 3 Preliminiary Design Balok Anak	
Tabel 4. 4 Preliminiary Design Balok Link	
Tabel 4. 5 Preliminiary Design Balok Di Luar Link Arah X	
Tabel 4. 6 Preliminary Design Balok Di Luar Link Y	
	-

Tabel 4. 7 Preliminary Design Kolom	94
Tabel 4. 8 Preliminary Design Bresing Arah X	94
Tabel 4. 9 Preliminary Design Bresing Arah Y	94
Tabel 4. 10 Pemilihan Faktor Arah Angin (Kd)	
Tabel 4. 11 Pemilihan Faktor Arah Angin (Kd) (Lanjutan)	98
Tabel 4. 12 Pemilihan Koefisien Tekanan Dinding C _P	
Tabel 4. 13 Penentuan Kategori Resiko Struktur	100
Tabel 4. 14 Penentuan Faktor Keutamaan Gempa	101
Tabel 4. 15 Perhitungan Klasifikasi Situs Tanah titik 1	101
Tabel 4. 16 Perhitungan Klasifikasi Situs Tanah titik 2	
Tabel 4. 17 Penentuan Nilai Spektral Desain	103
Tabel 4. 18 Penentuan Nilai Koefisien Situs Fa	103
Tabel 4. 19 Penentuan Nilai Koefisien Situs Fv	104
Tabel 4. 20 Penentuan KDS Pada Periode Pendek	
Tabel 4. 21 Penentuan KDS Pada Periode 1 Detik	106
Tabel 4. 22 Penentuan Sistem Struktur Berdasarkan KDS	106
Tabel 4. 23 Penentuan Kombinasi Sistem Struktur	107
Tabel 4. 24	108
Tabel 4. 25 Rasio Partisipasi Massa	115
Tabel 4. 26 Penentuan nilai Ct dan x	116
Tabel 4. 27 Penentuan Koefisien C _u	
Tabel 4. 28 Periode dan Frekuensi Struktur	
Tabel 4. 29 Base Reactions Akibat Beban Gravitasi	119
Tabel 4. 30 Base Reactions Akibat Beban Gempa	119
Tabel 4. 31 Base Reactions Setelah Perbesaran Faktor Skala	
Tabel 4. 32 Base Shear SRPMK Arah X	123
Tabel 4. 33 Base Shear SRPMK Arah Y	124
Tabel 4. 34 Base Shear SRBE Arah X	125
Tabel 4. 35 Base Shear SRBE Arah Y	
Tabel 4. 36 Penentuan Koefisien h sx Berdasarkan Kategori Resiko	
Tabel 4. 37 Simpangan Antar Lantai Arah X	
Tabel 4. 38 Simpangan Antar Lantai Arah Y	
Tabel 4. 39 Perhitungan P-Delta Arah X	
Tabel 4. 40 Perhitungan P-Delta Arah X	
Tabel 4. 41 Perhitungan Letak Garis Netral Balok Induk Interior Arah-X	
Tabel 4. 42 Perhitungan Letak Garis Netral Balok Induk Interior Arah-Y	
Tabel 4. 43 Perhitungan Letak Garis Netral Balok Induk Eksterior Arah- X	
Tabel 4. 44 Perhitungan Letak Garis Netral Balok Induk Eksterior Arah- X	
Tabel 4. 45 Output Beban Dorong Arah-X.	
Tabel 4. 46 Output Beban Dorong Arah-Y	225

Tabel 4. 47 Faktor Modifikasi Co FEMA 356	227
Tabel 4. 48 Faktor Modifikasi C ₂ FEMA 356	228
Tabel 4. 49 Level Kinerja Menurut FEMA-356	229
Tabel 4. 50 Rekapitulasi Kinerja Struktur FEMA-440	229
Tabel 4. 51 Pemilihan Parameter Mekanisme Garis Leleh Pada Sambungan Tipe	
4ES Pada balok	235
Tabel 4. 52 Pemilihan Parameter Mekanisme Garis Leleh Pada Sambungan Tipe	
4ES Balok	238
Tabel 4. 53 Gaya Dalam Pada Pondasi	251
Tabel 4. 54 Harga Satuan Dasar	255
Tabel 4. 55 Analisa Harga Satuan Pokok Kegiatan Baja	255
Tabel 4. 56 Volume Balok Interior	256
Tabel 4. 57 Volume Balok Eksterior	256
Tabel 4. 58 Volume Balok Anak	257
Tabel 4. 59 Volume Bresing	257
Tabel 4. 60 Volume Kolom	257
Tabel 4. 61 Harga Struktur Gedung Alternatif	258
Tabel 4. 62 Analisa Harga Satuan Pokok Kegiatan Gedung Existing	258
Tabel 4. 63 Biaya Struktur Gedung Existing	259
Tabel 4. 64 Biaya Struktur Gedung Existing	259

DAFTAR NOTASI

A_c	Luas beton, in in ² (mm ²).
A_c	Luas slab beton di lebar efektif, in ² (mm ²).
A_e	Luas efektif, in ² (mm ²).
A_e	Luas neto efektif, in ² (mm ²).
A_e	Jumlah luas efektif penampang berdasarkan lebar efektif
	tereduksi, b_e , d_e , atau h_e in ² (mm ²).
A_{fc}	Luas sayap tekan, in ² (mm ²).
A_{fg}	Luas bruto sayap tarik, in ² (mm ²).
A_{fn}	Luas neto sayap tarik, in ² (mm ²).
A_{ft}	Luas sayap tarik, in ² (mm ²).
A_g	Luas penampang bruto komponen struktur, in ² (mm ²).)
A_{gv}	Luas bruto pemikul geser, in ² (mm ²).
A_n	Luas neto komponen struktur, in ² (mm ²).
A_{nt}	Luas neto pemikul tarik, in ² (mm ²).
A_{nv}	Luas neto pemikul geser, in ² (mm ²).
A_{pb}	Luas tumpu terproyeksi, in ² (mm ²).
A_s	Luas penampang profil baja, in ² (mm ²).
A_{sa}	Luas penampang angkur baja stad berkepala, in ² (mm ²).
A_{sf}	Luas geser pada jalur runtuh, in ² (mm ²).
A_{sr}	Luas dari batang tulangan yang menerus, in ² (mm ²).
A_{sr}	Luas baja tulangan longitudinal yang disalurkan secara cukup
	di lebar efektif slab beton, in ² (mm ²).
A_t	Luas tarik neto, in ² (mm ²).
A_T	Gaya dan deformasi nominal akibat desain-dasar kebakaran
	yang diuraikan dalam Pasal 4.2.1
A_{TT}	Luas area tributari (m ²)
A_w	Luas badan, tinggi keseluruhan dikalikan tebal badan, dt_w .
	$in^{2}(mm^{2}).$
A_{we}	Luas efektif las, in ² (mm ²).
A_1	Luas beton yang dibebani, in ² (mm ²).
A_1	Luas tumpu baja konsentris di atas tumnpuan beton, in ² . (mm ²).
A_2	Luas maksimum bagian permukaan tumpuan yang secara
	geometris sama dan konsentris dengan luas yang dibebani,
	$in^{2}(mm^{2}).$
В	Lebar keseluruhan komponen struktur utama PSR persegi
	panjang.diukur 90 derajat terhadap bidang sambungan, (mm)
B_1	Pengali untuk memperhitungkan efek <i>P-δ</i>

B_2	Pengali untuk memperhitungkan efek P - Δ
$\frac{1}{C}$	Konstanta torsi PSR
C_b	Faktor modifikasi tekuk torsi-lateral untuk diagram momen
	tidak seragam apabila kedua ujung segmen terbreis
C_{vl}	Koefisien kekuatan geser badan
$C_{\nu 2}$	Koefisien tekuk geser badan
C_W	Konstanta pilin, ⁶ (mm ⁶)
C_1	Koefisien untuk penghitungan kekakuan efektif pada
	komponen struktur tekan komposit terbungkus beton
C_2	Penambahan jarak tepi
C_3	Koefisien untuk penghitungan kekakuan efektif pada
	komponen struktur tekan komposit terisi
D	Diameter terluar PSR bundar,(mm)
D	Diameter terluar komponen struktur utama PSR bundar, (mm)
D	Beban mati nominal,(N)
D_b	Diameter terluar komponen struktur cabang PSR bundar,
	(mm)
D_u	Pada sambungan kritis selip, pengali yang mencerminkan
	rasio pratarik baut rata-rata yang terpasang terhadap pratarik
	baut minimum terspesifikasi
E	Modulus elastisitas baja=29.000 (200.000 MPa)
E_c	Modulus elastisitas betas beton=w.5fa.(0.043w25MPa
E_s	Modulus elastisitas baja =29.000 (200.000 MPa)
EI _{eff}	Kekakuan efektif penampang komposit, ² (N-mm ²)
F_c	Tegangan tersedia pada komponen struktur utama, (MPa)
F_{ca}	Tegangan aksial tersedia pada titik yang ditinjau, (MPa)
$oldsymbol{F}_{cbw}$, $oldsymbol{F}_{cbz}$	Tegangan lentur tersedia pada titik yang ditinjau, (MPa)
F_{cr}	Tegangan tekuk penampang seperti yang ditentukan melalui
	analisis,(MPa)
F_{cr}	Tegangan kritis, (MPa)
F_{cr}	Tegangan tekuk torsi-lateral penampang seperti yang
	ditentukan melalui analisis, (MPa)
F _{cr}	Tegangan tekuk lokal penampang seperti ditentukan melalui
	analisis, (MPa)
F_{e}	Tegangan tekuk elastis, (MPa)
F_{el}	Tegangan tekuk lokal elastis, (MPa)
F_{EXX}	Kekuatan klasifikasi logam pengisi, (MPa)
F _{in}	Tegangan lekatan nominal, (MPa)

F_L	Kekuatan tekan nominal,di atas itu berlaku batas tekuk inelastik, (MPa)
F_{nBM}	Tegangan nominal logam dasar, (MPa)
F _{nt}	Tegangan tarik nominal dari Tabel J3.2, (MPa)
F_{nt}	Tegangan tarik nominal yang dimodifikasi untuk
	memperhitungkan efek tegangan geser, (MPa)
F_{nv}	Tegangan geser nominal dari Tabel J3.2,k si(MPa)
F_{nv}	Tegangan nominal logam las, (MPa)
F_{nw}	Tegangan nominal logam las, (Bab J) tanpa peningkatan
	kekuatan akibat arah beban untuklas filet
F_{SR}	Rentang tegangan izin, (MPa)
F_{TH}	Rentang tegangan izin batas, rentang tegangan mamum untuk
	riwayat hidup desain tidak terbatas dari Tabel A-3.1, (MPa)
F _u	Kekuatan tarik minimum terspesifikasi, (MPa)
F_y	Tegangan leleh minimum terspesifikasi, (MPa).Seperti
	yangdigunakan dalam Standar ini,"tegangan
	leleh"menunjukkan baiktitik leleh minimum terspesifikasi
	(untuk baja yang mempunyaititik leleh)maupun kekuatan
	leleh terspesifikasi (untuk baja yangtidak mempunyai titik
	leleh)
F_{yb}	Tegangan leleh minimum terspesifikasi pada material pelat
	atau komponen struktur cabang PSR, (MPa)
F_{yf}	Tegangan leleh minimum terspesifikasi pada sayap, (MPa)
F_{ysr}	Tegangan leleh minimum terspesifikas ipada batang tulangan,
	(MPa)
F_{yst}	Tegangan leleh minimum terspesifikasi pada material
	pengaku, (MPa)
F_{yw}	Tegangan leleh minimum terspesifikasi pada material badan,
	(MPa)
G	Modulus elastisitas geser baja=11.200 (77.200 MPa)
H	Dimensi tranversal mamum pada komponen struktur baja
	persegi panjang,(mm)
H	Geser tingkat total, dalam arah translasi yang sedang ditinjau,
	akibat gaya lateral yang digunakan untuk menghitung AH.
	(N)
Н	Tinggi keseluruhan komponen struktur PSR persegi panjang.
	diukur dalam bidang sambungan, (mm)

H_b	Tinggi keseluruhan komponen struktur cabang PSR persegi
	panjang,diukur dalam bidang sambungan, (mm)
Ι	Momen inersia dalam bidang lentur, ⁴ (mm ⁴)
I_c	Momen inersia penampang beton terhadap sumbu netral
	elastis penampang komposit, ⁴ (mm ⁴)
I_d	Momen inersia dek baja yang bertumpu pada komponen
	struktur sekunder ⁴ (mm ⁴)
I_p	Momen inersia komponen struktur primer, ⁴ (mm ⁴)
I_s	Momen inersia komponen struktur sekunder, ⁴ (mm ⁴)
I_s	Momen inersia profil baja terhadap sumbu netral elastis
	penampang komposit, ⁴ (mm ⁴)
Isr	Momen inersia batang tulangan terhadap sumbu netral elastis
	penampang komposit, ⁴ (mm ⁴)
I_{st}	Momen inersia pengaku transversal terhadap sumbu pusat
	badan untuk sepasang pengaku,atau terhadap muka kontak
	dengan pelat badan untuk pengaku tunggal, ⁴ (mm ⁴)
I_{st1}	Momen inersia minimum pengaku transversal yang
	diperlukan untuk pengembangan ketahanan pascatekuk panel
	badan yang diperkaku, ⁴ (mm ⁴)
I_{st2}	Momen inersia minimum pengaku transversal yang
	diperlukan untuk pengembangan ketahanan tekuk geser
	badan, ⁴ (mm ⁴)
I_x , I_y	Momen inersia terhadap sumbu utama, ⁴ (mm ⁴)
I_{yeff}	Momen inersia efektif keluar bidang, ⁴ (mm ⁴)
I_{yc}	Momen inersia sayap tekan terhadap sumbu y, ⁴ (mm ⁴)
I_{yt}	Momen inersia sayap tarik terhadap sumbu y, ⁴ (mm ⁴)
J	Konstanta torsi, (mm ⁴)
K	Faktor panjang efektif
K_{LL}	Faktor panjang efektif
K_x	Faktor panjang efektif untuk tekuk lentur terhadap sumbu x
K_y	Faktor panjang efektif untuk tekuk lentur terhadap sumbu y
K_z	Faktor panjang efektif untuk tekuk torsi terhadap sumbu
	longitudinal
$L_{ heta}$	Panjang komponen struktur, (mm)
L	Panjang komponen struktur, (mm)
L	Panjang komponen struktur tak terbreis secara lateral, (mm)
L	Panjang bentang, (mm)

L	Panjang komponen struktur antara titik kerja pada sumbu kord
_	rangka batang, (mm)
L	Beban hidup nominal
L	Laju beban hidup nominal
L	Beban hidup nominal okupansi,(N)
L	Tinggi tingkat, (mm)
L_b	Panjang antara titik-titik yang terbreis untuk mencegah
	peralihan lateral sayap tekan atau terbeis untuk mencegah
	punter penampang melintang, in (mm)
L_b	Panjang terbesar takterbreis secara lateral sepanjang masing-
	masing sayap di titik beban, (mm)
L_{br}	Panjang tak terbreis di dalam panel yang sedang ditinjau,
	(mm)
L_{br}	Panjang tak terbreis yang berdekatan dengan titik breis, (mm)
L_c	Panjang efektif komponen struktur, (mm)
L_{cx}	Panjang efektif komponen struktur untuk tekuk terhadap
_	sumbu x, (mm)
L_{cy}	Panjang efektif komponen struktur untuk tekuk terhadap
_	sumbu y,(mm)
L_{cz}	Panjang efektif komponen struktur untuk tekuk terhadap
-	sumbu longitudional, (mm)
L_{c1}	Panjang efektif pada bidang lentur, yang dihitung berdasarkan
	asumsi bahwa tidak ada translasi lateral di kedua ujung
	komponen struktur, yang dianggap sama dengan panjang tak
	terbreis secara lateral pada komponen struktur kecuali analisis
T	membuktikan nilai yang lebih kecil, (mm)
L _{in}	Panjang introdu beban,(mm) Patag panjang tak terbraig gagara lateral untuk kondigi batag
L_p	Batas panjang tak terbreis secara lateral untuk kondisi batas
I	leleh,(mm) Panjang komponen struktur primer, ft(m)
L_p L_r	Batas panjang tak terbreis secara lateral untuk kondisi batas
$L_{l'}$	tekuk torsi-lateral inelastis, (mm)
L_r	Beban hidup nominal atap
L_r L_s	Panjang komponen struktur sekunder, ft(m)
L_s L_v	Jarak dari gaya geser mamum ke nol, (mm)
L_v L_x, L_y, L_z	Panjang komponen struktur tak terbreis secara lateral untuk
$\mathbf{L}_x, \mathbf{L}_y, \mathbf{L}_z$	setiap sumbu, (mm)
M_A	Nilai absolut momen pada titik seperempat dari segmen tak
17# A	i mai absolut momen pada tink seperempat dan segmen tak

	terbreis, (N-mm)
M_a	Kekuatan lentur perlu yang menggunakan kombinasi beban,
	(N-mm)
M_B	Nilai absolut momen pada titik tengah dari segmen tak
	terbreis, (N-mm)
M_C	Nilai absolut momen pada titik tiga perempat dari segmen tak
	terbreis, (N-mm)
M_c	Kekuatan lentur tersedia, (N-mm)
M _{cr}	Momen tekuk torsi lateral elastis, (N-mm)
M_{cx} , M_{cy}	Kekuatan lentur tersedia yang ditentukan sesuai dengan Bab
14	F, (N-mm)
M_{cx}	Kekuatan torsi-lateral tersedia untuk lentur sumbu mayor yang
	ditentukan sesuai dengan Bab F dengan menggunakan
М	Cb=1,0, (N-mm) Kabuatan lantur taraadia tarbadan sumbu u untuk kaadaan
M_{cx}	Kekuatan lentur tersedia terhadap sumbu x untuk keadaan batas keruntuhan tarik sayap yang ditentukan sesuai dengan
	Pasal F13.1.in(N-mm)
M_{lt}	Momen orde pertama akibat kombinasi beban DFBT atau
IVA It	yang disebabkan oleh translasi lateral struktur saja, (N-mm)
M _{max}	Nilai absolut momen mamum pada segmen tak terbreis, (N-
17 mux	mm)
M_n	Kekuatan lentur nominal, (N-mm)
M_{nt}	Momen orde pertama yang menggunakan kombinasi beban
	DFBT atau ,dengan translasi lateral struktur dikekang, (N-
	mm)
M_p	Momen lentur plastis, in(N-mm)
M_p	Momen sehubungan dengan distribusi tegangan plastis pada
	penampang komposit, (N-mm)
M_{pl}	
M_r	Kekuatan lentur perlu orde ke dua akibat kombinasi beban
	DFBT atau , (N-mm)
M_r	Kekuatan lentur perlu, yang ditentukan sesuai Bab C, dengan
	menggunakan kombinasi beban DFBT atau , (N-mm)
M_r	Kekuatan lentur perlu pada balok dalam panel yang sedang
	ditinjau dengan menggunakan kombinasi beban DFBT atau .
	(N-mm)

M_{br} Kekuatan lentur perlu pada breis, (N-mm) M_{ro} Kekuatan lentur perlu pada kord di suatu joint, pada sisi Joint dengan tegangan tekan terendah, (N-mm) $M_{r.ip}$ Kekuatan lentur perlu dalam bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) $M_{r.op}$ Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) $M_{r.op}$ Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) $M_{r.op}$ Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{rx} Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{rx} Kekuatan lentur perlu keluar bidang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau, negatif untuk tekan, (N-mm) M_{u} Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_r Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan meng	M_r	Kekuatan lentur perlu terbesar pada balok di dalam panjang tak terbreis yang berdekatan dengan titik pembreisan dengan
M_{ro} Kekuatan lentur perlu pada kord di suatu joint, pada sisi Joint dengan tegangan tekan terendah, (N-mm) M_{r-ip} Kekuatan lentur perlu dalam bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{r-op} Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{r-op} Kekuatan lentur perlu keluar bidang pada cabang dengan 	16	menggunakan kombinasi beban DFBT atau , (N-mm)
dengan tegangan tekan terendah, (N-mm) M_{r-ip} Kekuatan lentur perlu dalam bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{r-ap} Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} Kekuatan lentur perlu di lokasi lubang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen leleh pada sayap tarik, (N-mm) M_y Momen leleh pada sayap tarik, (N-mm) M_y Momen leleh pada sayap tarik, (N-mm) M_y Momen terkecil di ujung panjang tak terbreis yang berlawanan dengan $M2$, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_r Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		
M_{r-ap} menggunakan kombinasi beban DFBT atau , (N-mm) M_{r-ap} Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} Kekuatan lentur perlu di lokasi lubang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen leleh pada sayap tarik, (N-mm) M_{yrt} Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_r Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M _{ro}	
M_{r-op} Kekuatan lentur perlu keluar bidang pada cabang dengan menggunakan kombinasi beban DFBT atau , (N-mm) M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} Kekuatan lentur perlu di lokasi lubang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tarik, (N-mm) M_{yft} Momen leleh pada sayap tarik, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_r Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_{r-ip}	
M_{rx} , M_{ry} Kekuatan lentur perlu, (N-mm) M_{rx} Kekuatan lentur perlu di lokasi lubang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_y Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M _{r-op}	Kekuatan lentur perlu keluar bidang pada cabang dengan
M_{rx} Kekuatan lentur perlu di lokasi lubang-lubang baut.yang ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_yc Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tarik, (N-mm) M_{yc} Momen teleh pada sayap tarik, (N-mm) M_{ft} Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	16 16	
ditentukan sesuai dengan Bab C. positif untuk tarik pada sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh senat terluar, (N-mm) M_y Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tarik, (N-mm) M_{yr} Momen leleh pada sayap tarik, (N-mm) M_{yr} Momen terkecil di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		
M_u sayap yang sedang ditinjau,negatif untuk tekan, (N-mm) M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh sehubungan dengan leleh pada sayap tarik dan leleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_yc Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tarik, (N-mm) M_{yr} Momen leleh pada sayap tarik, (N-mm) M_{yr} Momen terketif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_{rx}	
M_u Kekuatan lentur perlu dengan menggunakan kombinasi beban DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh sehubungan dengan leleh pada sayap tarik dan leleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_I' Momen teleh pada sayap tarik, (N-mm) M_I Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		
DFBT, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh sehubungan dengan leleh pada sayap tarik dan leleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yc} Momen leleh pada sayap tarik, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_1 'Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_y Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	16	
M_y Momen leleh serat terluar, (N-mm) M_y Momen leleh sehubungan dengan leleh pada sayap tarik dan leleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yr} Momen leleh pada sayap tarik, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_1' Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_{u}	
M_y Momen leleh sehubungan dengan leleh pada sayap tarik dan leleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_1' Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban, (N)		
M_y Ieleh pertama pada sayap tekan, (N-mm) M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_1' Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	•	
M_y Momen leleh terhadap sumbu lentur, (N-mm) M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_1' Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_y	
M_{yc} Momen leleh pada sayap tekan, (N-mm) M_{yt} Momen leleh pada sayap tarik, (N-mm) M_{I} 'Momen leleh pada sayap tarik, (N-mm) M_{I} 'Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_{I} Momen terkecil di ujung panjang tak terbreis, (N-mm) M_{2} Momen terbesar di ujung panjang tak terbreis, (N-mm) M_{2} Momen terbesar di ujung panjang tak terbreis, (N-mm) N_{i} Beban nosional yang diterapkan pada level i, (N) N_{i} Beban lateral tambahan, (N) O_{v} Koefisien sambungan overlap P_{a} Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		
M_{yt} Momen leleh pada sayap tarik, (N-mm) M_I 'Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_I Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		• · · · · · · · · · · · · · · · · · · ·
M_I 'Momen efektif di ujung panjang tak terbreis yang berlawanan denganM2, (N-mm) M_I Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	•	
denganM2, (N-mm) M_1 Momen terkecil di ujung panjang tak terbreis, (N-mm) M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)		
M_2 Momen terbesar di ujung panjang tak terbreis, (N-mm) N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	<i>M</i> ₁ '	
N_i Beban nosional yang diterapkan pada level i, (N) N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_1	Momen terkecil di ujung panjang tak terbreis, (N-mm)
N_i Beban lateral tambahan, (N) O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	M_2	Momen terbesar di ujung panjang tak terbreis, (N-mm)
O_v Koefisien sambungan overlap P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	N_i	Beban nosional yang diterapkan pada level i, (N)
P_a Kekuatan aksial perlu pada kord dengan menggunakan kombinasi beban , (N)	N_i	Beban lateral tambahan, (N)
kombinasi beban, (N)	O_v	Koefisien sambungan overlap
	P_a	Kekuatan aksial perlu pada kord dengan menggunakan
		kombinasi beban , (N)
P_{br} Kekuatan perlu di titik tengah dan ujung breis dengan	P_{br}	Kekuatan perlu di titik tengah dan ujung breis dengan
menggunakan kombinasi beban DFBT atau , (N)		menggunakan kombinasi beban DFBT atau , (N)
P_c Kekuatan aksial tersedia, (N)	P_c	Kekuatan aksial tersedia, (N)
<i>P_{cy}</i> Kekuatan aksial tekan tersedia keluar bidang lentur, (N)	P_{cy}	Kekuatan aksial tekan tersedia keluar bidang lentur, (N)
P_e Beban tekuk kritis elastis yang ditentukan sesuai dengan Bab	P_e	Beban tekuk kritis elastis yang ditentukan sesuai dengan Bab
C atau Lampiran 7, (N)		C atau Lampiran 7, (N)

Pe story	Kekuatan tekuk kritis elastis untuk tingkat pada arah translasi yang sedang ditinjau, (N)
P _{e1}	kekuatan tekuk kritis elastis komponen struktur pada bidang lentur, (N)
P _{lt}	Gaya aksial orde pertama yang menggunakan kombinasi beban DFBT atau ,akibat translasi lateral struktur saja, (N)
P _{mf}	Beban vertikal total pada kolom di tingkat yang merupakan bagian dari rangka momen,jika ada,dalam arah translasi yang sedang ditinjau, (N)
P_n	Kekuatan aksial nominal, (N)
P _{no}	Kekuatan aksial tekan nominal,simetris ganda,pada komponen struktur komposit dengan panjang nol,yang dibebani secara aksial, (N)
Pno	Kekuatan tekan tersedia pada komponen struktur komposit
	terisi simetris ganda dibebani secara aksial, (N)
P _{ns}	Kekuatan tekan penampang melintang, (N)
P_{nt}	Gaya aksial orde pertama yang menggunakan kombinasi beban DFBT atau ,dengan translasi lateral struktur dikekang, (N)
P_p	Kekuatan tumpu nominal, (N)
P_r	Kekuatan aksial perlu terbesar pada kolom di dalam panjang tak terbreis yang berdekatan dengan titik breis menggunakan kombinasi beban DFBT (N)
P _r	Kekuatan aksial tekan perlu dengan menggunakan kombinasi beban DFBT atau , (N)
P_r	Kekuatan aksial perlu pada kolom di dalam panel yang sedang ditinjau dengan menggunakan kombinasi beban DFBT atau , (N)
P _r	Kekuatan aksial perlu orde ke dua dengan menggunakan kombinasi beban DFBT atau , (N)
P _r	Kekuatan aksial perlu,ditentukan sesuai Bab C, dengan menggunakan kombinasi beban DFBT atau , (N)
<i>P</i> _r	Kekuatan aksial perlu komponen struktur di lokasi lubang baut; positif untuk tarik,negatif untuk tekan, (N)
P _r	Gaya eksternal perlu yang diterapkan pada komponen struktur komposit, (N)
Pro	Kekuatan aksial perlu pada kord di joint, di sisi joint dengan tegangan tekan terendah, (N)

P _{story}	Beban vertikal total yang ditumpu oleh tingkat dengan
2	menggunakan kombinasi beban DFBT atau ,mana yang
	sesuai,termasuk beban pada kolom yang bukan bagian dari
	sistem penahan gaya lateral, (N)
P_u	Kekuatan aksial tekan perlu dengan menggunakan kombinasi
	beban DFBT, (N)
P_y	Kekuatan aksial leleh pada kolom, (N)
Q_{ct}	Kekuatan tarik tersedia, (N)
Q _{cv} Q _f	Kekuatan geser tersedia, (N)
Q_f	Parameter intera tegangan kord
Q_g	Parameter joint rangka batang yang bercelah dengan
	memperhitungkan efek geometri
Q_n	Kekuatan nominal satu angkur baja stad berkepala atau
	angkur kanal baja, (N)
Q_{nt}	Kekuatan tarik nominal angkur baja stad berkepala, (N)
Q_{nv}	Kekuatan geser nominal angkur baja stad berkepala, (N)
Q_{rt}	Kekuatan larik perlu, (N)
Q_{rv}	Kekuntan geser perl, (N)
R	Radius permukaanjoint,(mm)
R_a	Kekuatan perlu dengan menggunakan kombinasi beban
R_{FIL}	Faktor redu untuk joint dengan menggunakan hanya sepasang
_	las filet transversal saja
R_g	Koefisien untuk memperhitungkan efek grup
R_M	Koefisien untuk memperhitungkan pengaruh P - δ pada P - Δ
R_n	Kekuatan nominal,disyaratkan pada Standar ini
R_n	Ketahanan slip nominal, (N)
R_n	Kekuatan nominal pada mekanisme transfer gaya yang
D	berlaku, (N)
R_{nwl}	Kekuatan nominal total pada las filet yang dibebani
D	longitudinal, yang ditentukan sesuai dengan Tabel J2.5, (N)
R_{nwt}	Kekuatan nominal total pada las filet yang dibebani
	transversal, yang ditentukan sesuai dengan Tabel J2.5 tanpa
D	pengganti pada Pasal J2.4(a).(N)
R_p	Faktor efek posisi untuk stad geser
R_{pc}	Faktor plastifikasi badan Faktor redu kekuatan lentur
R _{pg} D	
R_{PJP}	Faktor redu untuk las gruv penetrasijointparsial (PJP)
	transversal dengan atau tanpa penguat

R_{pt}	Faktor plastifikasi badan sehubungan dengan kondisi batas leleh sayap tarik
R_{u}	Kekuatan perlu dengan menggunakan kombinasi beban DFBT
S	Modulus penampang elastis terhadap sumbu lentur, ³ (mm ³)
S	Beban salju nominal, (N)
S	Spasi komponen struktur sekunder, ft(m)
S_c	Modulus penampang elastis pada toe tersebut yang mengalami tekan relatif terhadap sumbu lentur, ³ (mm ³)
S_e	Modulus penampang efektif yang ditentukan dengan lebar efektif sayap tekan, ³ (mm ³)
Sip	Modulus penampang elastis efektif las untuk lentur di bidang, ³ (mm ³)
S _{min}	Modulus penampang elastis minimum relatif terhadap sumbu lentur, ³ (mm ³)
S_{op}	Modulus penampang elastis efektif las untuk lentur keluar bidang, ³ (mm ³)
S_{xc} , S_{xt}	Modulus penampang elastis masing-masing pada sayap tekan dan tarik, ³ (mm ³)
S_x	Modulus penampang elastis terhadap sumbu x, ³ (mm ³)
S_x	Modulus penampang elastis minimum terhadap sumbu x, ³ (mm ³)
S_{y}	Modulus penampang elastis terhadap sumbu y, ³ (mm ³)
T	Kenaikan temperatur baja akibat terekspos panas yang tak diinginkan,°F(°C)
Ta	Gaya tarik perlu dengan menggunakan kombinasi beban , (kN)
T_b	Gaya tarik pengencang minimum pada Tabel J3.1 atau J3.1M, (kN)
T_c	Kekuatan torsi yang tersedia,(N-mm)
T_n	Kekuatan torsi nominal,(N-mm)
T_r	Kekuatan torsi perlu,yang ditentukan sesuai dengan Bab C, dengan menggunakan kombinasi beban DFBT atau , (N-mm)
T _u	Gaya tarik perlu dengan menggunakan kombinasi beban DFBT, (N)
U	Faktor lag geser
V	Kecepatan angin dasar
<i>V</i> '	Gaya geser nominal antara balok baja dan slab beton yang disalurkan melalui angkur baja, (N)

V_{br}	Kekuatan geser perlu sistem pembreisan dalam arah tegak
	lurus sumbu longitudinal kolom, (N)
V_c	Kekuatan geser tersedia, (N)
V_{c1}	Kekuatan geser tersedia yang dihitung dengan Vn,yang
	didefinisikan dalam Pasal G2.1 atau Pasal G2.2,mana yang
	berlaku, (N)
V_{c2}	Kekuatan geser tekuk yang tersedia, (N)
V_n	Kekuatan geser nominal, (N)
V_r	Kekuatan geser perlu pada panel yang sedang ditinjau, (N)
V_r	Kekuatan geser perlu yang ditentukan sesuai dengan Bab
	C,dengan menggunakan kombinasi beban DFBT atau , (N)
V'_r	Gaya geser longitudinal perlu yang disalurkan ke baja atau
	beton, (N)
V_u	Gaya geser perlu (N)
Y_i	Beban gravitasi yang diterapkan pada level i dari kombinasi
	beban DFBT atau kombinasi beban ,mana yang sesuai, (N)
Ζ	Modulus penampang plastis terhadap sumbu lentur, ³ (mm ³)
Z_b	Modulus penampang plastis pada cabang terhadap sumbu
	lentur, ³ (mm ³)
Z_x	Modulus penampang plastis terhadap sumbu x, ³ (mm ³)
Z_y	Modulus penampang plastis terhadap sumbu y, ³ (mm ³)
a	Jarak bersih antara pengaku-pengaku tranversal, (mm)
a	Jarak antara konektor, (mm)
a	Jarak terpendek dari tepi lubang sendi ke tepi komponen
	struktur yang diukur sejajar arah gaya, (mm)
a	Setengah panjang muka akar tanpa las dalam arah tebal pelat
	yang dibebani-tarik, (mm)
<i>a</i> '	Panjang las sepanjang kedua tepi dari penghentian pelat
	penutup pada balok atau girder, (mm)
a_w	Rasio antara dua kali luas badan yang mengalami tekan akibat
	penerapan momen lentur sumbu mayor saja terhadap luas
	komponen sayap tekan
b	Lebar total kaki yang mengalami tekan, (mm)
b	Untuk sayap komponen struktur profil l,setengah lebar sayap
	total, (mm)
b	Untuk kaki siku dan untuk sayap kanal dan Z, kaki total atau
	lebar sayap, (mm)

b	Untuk pelat, jarak dari tepi bebaske baris pertama pengencang
1	atau garis las, (mm)
b b	Lebar elemen, (mm) Lebar elemen tekan yang tidak diperkaku; lebar elemen tekan
D	
h	yang diperkaku, (mm) Labar kaki yang menghan gaya gagar atau tinggi hadan profil
b	Lebar kaki yang menahan gaya geser atau tinggi badan profil T, (mm)
Ь	Lebar kaki, (mm)
	Lebar sayap kolom, (mm)
b _{cf} b _e	Lebar efektif teredu, (mm)
	Jarak tepi efektif untuk perhitungan kekuatan runtuh Tarik
b_e	komponen struktur yang disambung dengan sendi, (mm)
h.	Lebar sayap, (mm)
b_f	Lebar sayap tekan, (mm)
$m{b}_{fc}$ $m{b}_{ft}$	Lebar sayap tarik, (mm)
b_{jt} b_l	Panjang kaki siku terpanjang, (mm)
b_p	Dimensi terkecil di antara a dan h, (mm)
b_p b_s	Panjang kaki siku terpendek, (mm)
b_s	Lebar pengaku untuk pengaku satu sisi; dua kali lebar
03	pengaku individual untuk pengaku dua sisi, (mm)
С	Jarak dari sumbu netral ke serat tekan terluar, (mm)
с с ₁	Faktor penyesuaian ketidaksempurnaan lebar efektif,
01	ditentukan dari Tabel E7.1
d	Tinggi penampang yang dipotong menjadi profil T, (mm)
d	Tinggi profil T atau lebar kaki badan yang mengalami tekan,
	(mm)
d	Diameter pengencang nominal, (mm)
d	Tinggi nominal total komponen struktur, (mm)
d	Tinggi batang berpenampang persegi panjang, (mm)
d	Diameter, (mm)
d	Diameter sendi, (mm)
d_b	Tinggi balok, (mm)
d_b	Diameter nominal (diameter tubuh), (mm)
d_c	Tinggi penampang kolom,(mm)
d_e	Lebar efektif profil T, (mm)
d_{sa}	Diameter angkur bajastad berkepala, (mm)
e	Eksentrisitas pada sambungan rangka batang,positif apabila
	menjauhi cabang, (mm)

emid-ht	Jarak dari tepi tubuh angkur baja stad berkepala ke badan dek baja, (mm)
f'_c	Kekuatan tekan beton terspesifikasi, (MPa)
f_o	Tegangan akibat air yang berasal dari beban nominal hujan
	atau salju (eksklusif dari kontribusi genangan),dan beban-
	beban lain yang bekerja seperti yang disyaratkan dalam Pasal
	B2, (MPa)
fra	Tegangan aksial perlu di titik yang sedang ditinjau,ditentukan
	sesuai Bab C,dengan menggunakan kombinasi beban DFBT
	atau , (MPa)
f_{rv}	Tegangan geser perlu dengan menggunakan kombinasi beban
	DFBT atau , (MPa)
h	jarak bersih antara keduasayap dikurangi las filet; untuk badan
	penampang canai dingin,jarak bersih antara kedua sayap
	dikurangi radius pojok dimasing-masing sayap; (mm)
h_c	Dua kali jarak dari pusat berat ke yang berikut: muka
	bagiandalam sayap tekan dikurangi filet, untuk profil gilas
	panas;kegaris terdekat pengencang pada sayap tekan atau
	muka bagiandalam dari sayap tekan apabila las digunakan,
	untuk penampang tersusun, (mm)
he	Lebar badan efektif, (mm)
h_f	Faktor untuk pengisi
h _o	Jarak antara titik-titik berat sayap,(mm)
h_p	Dua kali jarak dari sumbu netral plastis ke garis pengencang
	terdekat pada sayap tekan atau muka bagian dalam sayap
	tekan bila las digunakan,(mm)
k	Jarak dari muka terluar sayap ke ujung filet yang di badan,
7	
k_c	Koefisien untuk elemen langsing tidak diperkaku
k_{sc}	Koefisien kombinasi Tarik dan geser slip-kritis
k_{v}	Koefisien tekuk geser pelat badan
1	Panjang actual las yang ujungnya dibebani, (mm)
l 1	Panjang sambungan, (mm)
	Panjang angkur kanal, (mm)
l_b	Panjang tumpu beban,diukur paralel terhadap sumbu
	komponen struktur PSR (atau diukur melintang lebar PSR
1	pada kasus pelat penutup yang dibebani), (mm)
l_b	Panjang tumpu, (mm)

l_c	Jarak bersih,dalam arah gaya,antara tepi lubang dan tepi
	lubang yang berdekatan atau tepi material, (mm)
l_e	Panjang efektif total las gruv dan las filet pada PSR persegi
_	panjang untuk perhitungan kekuatan las, (mm)
lend	Jarak dari sisi terdekat cabang atau pelat penyambung ke
	ujung kord, (mm)
l_p	Panjang terproye cabang overlap pada kord, (mm)
l_1, l_2	Panjang las penyambung, (mm)
n	Banyaknya titik-titik yang terbreis di dalam bentang
п	Ulir per inch(per mm)
n_b	Banyaknya baut penahan tarik yang diterapkan
ns	Banyaknya bidang slip yang memungkinkan terjadinya slip
	pada sambungan
N _{SR}	Banyaknya fluktuasi rentang tegangan pada umur desain
р	Pitch,per ulir (mm per ulir)
p_b	Perimeter antar muka lekatan beton-baja di dalam penampang
	melintang komposit, (mm)
r	Radius girasi, (mm)
<i>r</i> _a	Radius girasi terhadap sumbu geometri yang paralel dengan
	kakiyang disambung, (mm)
r _i	Radius girasi minimum dari komponen individual, (mm)
$\overline{r_o}$	Radius girasi polar terhadap pusat geser, (mm)
r _t	Radius girasi efektif untuk tekuk torsi lateral.Untuk profil l
	denganpenutup kanal atau pelat penutup yang disambungkan
	ke sayaptekan, radius girasi komponen sayap pada tekan lentur
	ditambahsepertiga luas badan yang mengalami tekan akibat
	penerapanmomen lentur sumbu mayor saja, (mm)
r_{x}	Radius girasi terhadap sumbu x, (mm)
r _y	Radius girasi terhadap sumbu y, (mm)
r _z	Radius girasi terhadap sumbu utama minor, (mm)
S	Spasi as ke as longitudinal (pitch)antara dua lubang berurutan, (mm)
<i>t</i> _w	Tebal badan web (mm)
t	Jarak dari sumbu netral ke serat tarik terluar, (mm)
t t	Tebal dinding, (mm)
t t	Tebal kaki siku, (mm)
ı	

tLebar batang persegi panjang paralel terhadap sumbu lentur,
(wm)tTebal material yang disambung, (mm)tTebal pelat, (mm)tTebal total pengisi, (mm)tTebal dinding desain komponen struktur PSR, (mm)tTebal dinding desain komponen struktur utama PSR, (mm)tTebal kaki siku atau stem T, (mm)