LAMPIRAN

Lampiran 1 Gambar Mesin Cane Knife 1

Lampiran 2 Gambar Mesin Cane Knife 2

Waktu Antar Kerusakan (TTF) 1. Komponen *Knife Steel* 1

Data variable: TTF Knife Steel 1

6 values ranging from 152.0 to 296.0

Fitted Distributions

Lampiran 3 Data variable: TTF Knife Steel 1

Exponential	Gamma	Normal	Weibull
mean = 210.667	shape = 16.3863	mean = 210.667	shape = 4.36787
	scale = 0.077783	standard deviation = 57.8366	scale = 231.535

The StatAdvisor

This analysis shows the results of fitting 4 distributions to the data on TTF Knife Steel 1. The estimated parameters of the fitted distributions are shown above. You can test whether the distributions fit the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the distributions fit by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 1

Kolmogorov-Smirnov Test

Lampiran 4 1 1 F Knife Steel 1 Kolmogorov-Smirnov 1 es				
	Exponential	Gamma	Normal	Weibull
DPLUS	0.245352	0.233353	0.225545	0.239458
DMINUS	0.513987	0.148347	0.155207	0.14709
DN	0.513987	0.233353	0.225545	0.239458
P-Value	0.0839947	0.899514	0.920314	0.881574

Lampiran 4 TTF Knife Steel 1 Kolmogorov-Smirnov Test

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 1 can be adequately modeled by various distributions.

P-values less than 0.05 would indicate that TTF Knife Steel 1 does not come from the selected distribution with 95% confidence.

Lampiran 5 TTF Knife Steel 1 distribution

2. Komponen Knife Steel 2

Data variable: TTF Knife Steel 2

3 values ranging from 224.0 to 544.0

Fitted Distributions

Lampiran 6 Data variable: TTF Knife Steel 2

Exponential	Gamma	Normal	Weibull
mean = 389.333	shape = 8.00626	mean = 389.333	shape = 3.43244
	scale = 0.020564	standard deviation = 160.266	scale = 435.282

The StatAdvisor

This analysis shows the results of fitting 4 distributions to the data on TTF Knife Steel 2. The estimated parameters of the fitted distributions are shown above. You can test whether the distributions fit the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the distributions fit by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 2

Kolmogorov-Smirnov Test

Lampiran 7 TTF Knife Steel 2 Kolmogorov-Smirnov Test

	Exponential	Gamma	Normal	Weibull
DPLUS	0.247273	0.238147	0.182208	0.236137
DMINUS	0.437488	0.243853	0.193202	0.216802
DN	0.437488	0.243853	0.193202	0.236137
P-Value	0.614134	0.994112	0.999877	0.996159

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 2 can be adequately modeled by various distributions.

P-values less than 0.05 would indicate that TTF Knife Steel 2 does not come from the selected distribution with 95% confidence.

Lampiran 8 TTF Knife Steel 2 distribution

Histogram for TTF Knife Steel 2

Waktu Perbaikan (TTR) 1. Komponen *Knife Steel* 1

Data variable: TTR Knife Steel 1

7 values ranging from 0.81 to 1.11

Fitted Distributions

Lampiran 9 Data variable: TTR Knife Steel 1

Exponential	Gamma	Normal	Weibull
mean = 0.982857	shape = 105.758	mean = 0.982857	shape = 13.0531
	scale = 107.603	standard deviation $= 0.101113$	scale = 1.02385

The StatAdvisor

This analysis shows the results of fitting 4 distributions to the data on TTR Knife Steel 1. The estimated parameters of the fitted distributions are shown above. You can test whether the distributions fit the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the distributions fit by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 1

Kolmogorov-Smirnov Test

Lampiran 10 TTR Knife Steel 1 Kolmogorov-Smirno	v Test
---	--------

			-	
	Exponential	Gamma	Normal	Weibull
DPLUS	0.32324	0.113756	0.104298	0.114927
DMINUS	0.561383	0.194583	0.177251	0.138473
DN	0.561383	0.194583	0.177251	0.138473
P-Value	0.0242592	0.953669	0.980424	0.999303

This pane shows the results of tests run to determine whether TTR Knife Steel 1 can be adequately modeled by various distributions.

P-values less than 0.05 would indicate that TTR Knife Steel 1 does not come from the selected distribution with 95% confidence.

2. Komponen Knife Steel 2

Data variable: TTR Knife Steel 2

4 values ranging from 1.01 to 1.11

Fitted Distributions

Lampiran 12 Data variable: TTR Knife Steel 2

Exponential	Gamma	Normal	Weibull
mean = 1.0525	shape = 789.094	mean = 1.0525	shape = 28.6292
	scale = 749.733	standard deviation $= 0.0434933$	scale = 1.07139

The StatAdvisor

This analysis shows the results of fitting 4 distributions to the data on TTR Knife Steel 2. The estimated parameters of the fitted distributions are shown above. You can test whether the distributions fit the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the distributions fit by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 2

Kolmogorov-Smirnov Test

	Exponential	Gamma	Normal	Weibull
DPLUS	0.348321	0.223397	0.197536	0.228849
DMINUS	0.616962	0.185666	0.164244	0.18641
DN	0.616962	0.223397	0.197536	0.228849
P-Value	0.0951851	0.988386	0.997658	0.984833

Lampiran 13 TTR Knife Steel 2 Kolmogorov-Smirnov Test

This pane shows the results of tests run to determine whether TTR Knife Steel 2 can be adequately modeled by various distributions.

P-values less than 0.05 would indicate that TTR Knife Steel 2 does not come from the selected distribution with 95% confidence.

Lampiran 14 TTR Knife Steel 2 distribution

Distribution 1 Exponential Gamma 0.8 Normal Weibull frequency 0.6 0.4 0.2 0 1.03 1 1.06 1.09 1.12 1.15 TTR Knife Steel 2

Histogram for TTR Knife Steel 2

A. Waktu Antar Kerusakan (TTF)1. Komponen *Knife Steel* 1

Uji Kesesuaian Distribusi Normal TTF Komponen Knife Steel 1

Data variable: TTF Knife Steel 1

6 values ranging from 152.0 to 296.0

Fitted Distributions Lampiran 15 Uji Kesesuaian Distribusi *Normal* TTF Komponen *Knife Steel* 1 *Normal* mean = 210.667 standard deviation = 57.8366

This analysis shows the results of fitting a normal distribution to the data on TTF Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options

Goodness-of-Fit Tests for TTF Knife Steel 1

0.920314

Kolmogorov-Smirnov Test Lampiran 16 TTF Knife Steel 1 Kolmogorov-Smirnov Test <u>Normal</u> DPLUS 0.225545 DMINUS 0.155207 DN 0.225545

The StatAdvisor

P-Value

This pane shows the results of tests run to determine whether TTF Knife Steel 1 can be adequately modeled by a normal distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 1 comes from a normal distribution with 95% confidence

Lampiran 17 TTF Knife Steel 1 normal distribution

Uji Kesesuaian Distribusi Exponential TTF Komponen Knife Steel 1

Data variable: TTF Knife Steel 1

6 values ranging from 152.0 to 296.0

Fitted Distributions

Lampiran 18 Uji Kesesuaian Distribusi *Exponential* TTF Komponen *Knife Steel* 1 *Exponential* mean = 210.667

This analysis shows the results of fitting an exponential distribution to the data on TTF Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the exponential distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the exponential distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 1 Kolmogorov-Smirnov Test

Lampiran 19 TTF Knife Steel 1 Kolmogorov-Smirnov Test

	Exponential
DPLUS	0.245352
DMINUS	0.513987
DN	0.513987
P-Value	0.0839947

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 1 can be adequately modeled by an exponential distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 1 comes from a exponential distribution with 95% confidence.

Lampiran 20 TTF Knife Steel 1 exponential distribution

Histogram for TTF Knife Steel 1

Uji Kesesuaian Distribusi Weibull TTF Komponen Knife Steel 1

Data variable: TTF Knife Steel 1

6 values ranging from 152.0 to 296.0

Fitted Distributions

Lampiran 21 Uji Kesesuaian Distribusi Weibull TTF Komponen Knife Steel 1

Weibull
shape = 4.36787
scale = 231.535

This analysis shows the results of fitting a Weibull distribution to the data on TTF Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the Weibull distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the Weibull distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 1

Kolmogorov-Smirnov Test Lampiran 22 TTF Knife Steel 1 Kolmogorov-Smirnov Test Weibull

	WeiDuli
DPLUS	0.239458
DMINUS	0.14709
DN	0.239458
P-Value	0.881574

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 1 can be adequately modeled by a Weibull distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 1 comes from a Weibull distribution with 95% confidence.

Lampiran 23 TTF Knife Steel 1 Weibull distribution

Histogram for TTF Knife Steel 1

Uji Kesesuaian Distribusi Gamma TTF Komponen Knife Steel 1

Data variable: TTF Knife Steel 1

6 values ranging from 152.0 to 296.0

Fitted Distributions

Lampiran 24 Uji Kesesuaian Distribusi Gamma TTF Komponen Knife Steel 1

Gamma	
shape = 16.3863	
scale = 0.077783	

The StatAdvisor

This analysis shows the results of fitting a gamma distribution to the data on TTF Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the gamma distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the gamma distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 1

Kolmogorov-Smirnov Test Lampiran 25 TTF Knife Steel 1 Kolmogorov-Smirnov Test

	Gamma
DPLUS	0.233353
DMINUS	0.148347
DN	0.233353
P-Value	0.899514

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 1 can be adequately modeled by a gamma distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 1 comes from a

Lampiran 26 TTF Knife Steel 1 gamma distribution

2. Komponen Knife Steel 2

Uji Kesesuaian Distribusi Normal TTF Komponen Knife Steel 2

Data variable: TTF Knife Steel 2

3 values ranging from 224.0 to 544.0

Fitted Distributions Lampiran 27 Uji Kesesuaian Distribusi *Normal* TTF Komponen *Knife Steel* 2 *Normal*

mean = 389.333	
standard deviation = 160.266	

0.999877

The StatAdvisor

P-Value

This analysis shows the results of fitting a normal distribution to the data on TTF Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 2 Kolmogorov-Smirnov Test Lampiran 28 TTF Knife Steel 2 Kolmogorov-Smirnov Test Normal DPLUS 0.182208 DMINUS 0.193202 DN 0.193202

This pane shows the results of tests run to determine whether TTF Knife Steel 2 can be adequately modeled by a normal distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 2 comes from a normal distribution with 95% confidence.

Lampiran 29 TTF Knife Steel 2 normal distribution

Histogram for TTF Knife Steel 2

Uji Kesesuaian Distribusi Exponential TTF Komponen Knife Steel 2

Data variable: TTF Knife Steel 2

3 values ranging from 224.0 to 544.0

Fitted Distributions

Lampiran 30 Uji Kesesuaian Distribusi *Exponential* TTF Komponen *Knife Steel* 2 *Exponential*

mean = 389.333

The StatAdvisor

This analysis shows the results of fitting an exponential distribution to the data on TTF Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the exponential distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the exponential distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 2

Kolmogorov-Smirnov Test Lampiran 31 TTF Knife Steel 2 Kolmogorov-Smirnov Test Exponential DPLUS 0.247273

	слронениш
DPLUS	0.247273
DMINUS	0.437488
DN	0.437488
P-Value	0.614134

This pane shows the results of tests run to determine whether TTF Knife Steel 2 can be adequately modeled by an exponential distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 2 comes from a exponential distribution with 95% confidence.

Lampiran 32 TTF Knife Steel 2 exponential distribution

Histogram for TTF Knife Steel 2

Uji Kesesuaian Distribusi Weibull TTF Komponen Knife Steel 2

Data variable: TTF Knife Steel 2

3 values ranging from 224.0 to 544.0

Fitted Distributions

Lampiran 33 Uji Kesesuaian Distribusi Weibull TTF Komponen Knife Steel 2

Weibull
shape = 3.43244
scale = 435.282

The StatAdvisor

This analysis shows the results of fitting a Weibull distribution to the data on TTF Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the Weibull distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the Weibull distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTF Knife Steel 2

Kolmogorov-Smirnov Test

	Weibull
DPLUS	0.236137
DMINUS	0.216802
DN	0.236137
P-Value	0.996159

Lampiran 34 TTF Knife Steel 2 Kolmogorov-Smirnov Test

This pane shows the results of tests run to determine whether TTF Knife Steel 2 can be adequately modeled by a Weibull distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 2 comes from a Weibull distribution with 95% confidence.

Lampiran 35 TTF Knife Steel 2 Weibull distribution

Histogram for TTF Knife Steel 2

Uji Kesesuaian Distribusi Gamma TTF Komponen Knife Steel 2

Data variable: TTF Knife Steel 2

3 values ranging from 224.0 to 544.0

Fitted Distributions Lampiran 36 Uji Kesesuaian Distribusi Gamma TTF Komponen Knife Steel 2

Gamma	
shape = 8.00626	
scale = 0.020564	

The StatAdvisor

This analysis shows the results of fitting a gamma distribution to the data on TTF Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the gamma distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the gamma distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and

display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Konnogorov-	simmov rest	
Lampiran 3	87 TTF Kni	fe Steel 2 Kolmogorov-Smirnov Test
	Gamma	
DPLUS	0.238147	
DMINUS	0.243853	
DN	0.243853	
P-Value	0.994112	

Goodness-of-Fit Tests for TTF Knife Steel 2 Kolmogorov-Smirnov Test

The StatAdvisor

This pane shows the results of tests run to determine whether TTF Knife Steel 2 can be adequately modeled by a gamma distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTF Knife Steel 2 comes from a gamma distribution with 95% confidence.

Lampiran 38 TTF Knife Steel 2 gamma distribution

B. Waktu Perbaikan (TTR)

1. Komponen Knife Steel 1

Uji Kesesuaian Distribusi Normal TTR Komponen Knife Steel 1

Data variable: TTR Knife Steel 1

7 values ranging from 0.81 to 1.11

Fitted Distributions

Lampiran 39 Uji Kesesuaian Distribusi Normal TTR Komponen Knife Steel 1

Normal	
mean = 0.982857	
standard deviation $= 0.101113$	

This analysis shows the results of fitting a normal distribution to the data on TTR Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 1

0.980424

Kolmogorov-Smirnov Test Lampiran 40 TTR Knife Steel 1 Kolmogorov-Smirnov Test <u>Normal</u> DPLUS 0.104298 DMINUS 0.177251 DN 0.177251

The StatAdvisor

P-Value

This pane shows the results of tests run to determine whether TTR Knife Steel 1 can be adequately modeled by a normal distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 1 comes from a normal distribution with 95% confidence.

Lampiran 41 TTR Knife Steel 1 normal distribution

Uji Kesesuaian Distribusi Exponential TTR Komponen Knife Steel 1

Data variable: TTR Knife Steel 1

7 values ranging from 0.81 to 1.11

Fitted Distributions Lampiran 42 Uji Kesesuaian Distribusi *Exponential* TTR Komponen *Knife Steel* 1 *Exponential* mean = 0.982857

This analysis shows the results of fitting an exponential distribution to the data on TTR Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the exponential distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the exponential distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 1

Kolmogorov-Smirnov Test Lampiran 43 TTR Knife Steel 1 Kolmogorov-Smirnov Test <u>Exponential</u> DPLUS 0.32324 DMINUS 0.561383 DN 0.561383 P-Value 0.0242592

The StatAdvisor

This pane shows the results of tests run to determine whether TTR Knife Steel 1 can be adequately modeled by an exponential distribution.

Since the smallest P-value amongst the tests performed is less than 0.05, we can reject the idea that TTR Knife Steel 1 comes from a exponential distribution with 95% confidence.

Lampiran 44 TTR Knife Steel 1 exponential distribution

Histogram for TTR Knife Steel 1

Uji Kesesuaian Distribusi Weibull TTR Komponen Knife Steel 1

Data variable: TTR Knife Steel 1

7 values ranging from 0.81 to 1.11

Fitted Distributions Lampiran 45 Uji Kesesuaian Distribusi Weibull TTR Komponen Knife Steel 1

	Weibull
ſ	shape = 13.0531
Γ	scale = 1.02385

The StatAdvisor

This analysis shows the results of fitting a Weibull distribution to the data on TTR Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the Weibull distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the Weibull distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 1

Kolmogorov-Smirnov Test Lampiran 46 TTR Knife Steel 1 Kolmogorov-Smirnov Test

	Weibull
DPLUS	0.114927
DMINUS	0.138473
DN	0.138473
P-Value	0.999303

The StatAdvisor

This pane shows the results of tests run to determine whether TTR Knife Steel 1 can be adequately modeled by a Weibull distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 1 comes from a Weibull distribution with 95% confidence.

Lampiran 47 TTR Knife Steel 1 Weibull distribution

Uji Kesesuaian Distribusi Gamma TTR Komponen Knife Steel 1

Data variable: TTR Knife Steel 1

7 values ranging from 0.81 to 1.11

Fitted Distributions

Lampiran 48 Uji Kesesuaian Distribusi Gamma TTR Komponen Knife Steel 1

Gamma
shape = 105.758
scale = 107.603

The StatAdvisor

This analysis shows the results of fitting a gamma distribution to the data on TTR Knife Steel 1. The estimated parameters of the fitted distribution are shown above. You can test whether the gamma distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the gamma distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 1

Kolmogorov-Smirnov Test

Lampiran 49 TTR Knife Steel 1 Kolmogorov-Smirnov Test

	Gamma
DPLUS	0.113756
DMINUS	0.194583
DN	0.194583
P-Value	0.953669

The StatAdvisor

This pane shows the results of tests run to determine whether TTR Knife Steel 1 can be adequately modeled by a gamma distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 1 comes from a gamma distribution with 95% confidence.

2. Komponen Knife Steel 2

Uji Kesesuaian Distribusi Normal TTR Komponen Knife Steel 2

Data variable: TTR Knife Steel 2

4 values ranging from 1.01 to 1.11

Fitted Distributions Lampiran 51 Uji Kesesuaian Distribusi *Normal* TTR Komponen *Knife Steel* 2 *Normal* mean = 1.0525

mean = 1.0525 standard deviation = 0.0434933

The StatAdvisor

This analysis shows the results of fitting a normal distribution to the data on TTR Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the normal distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the normal distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 2

Kolmogorov-Smirnov Test Lampiran 52 TTR Knife Steel 2 Kolmogorov-Smirnov Test <u>Normal</u> DPLUS 0.197536 DMINUS 0.164244 DN 0.197536 P-Value 0.997658

This pane shows the results of tests run to determine whether TTR Knife Steel 2 can be adequately modeled by a normal distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 2 comes from a normal distribution with 95% confidence.

Histogram for TTR Knife Steel 2

Uji Kesesuaian Distribusi Exponential TTR Komponen Knife Steel 2

Data variable: TTR Knife Steel 2

4 values ranging from 1.01 to 1.11

```
Fitted Distributions
Lampiran 54 Uji Kesesuaian Distribusi Exponential TTR Komponen Knife Steel 2
Exponential
mean = 1.0525
```

The StatAdvisor

This analysis shows the results of fitting an exponential distribution to the data on TTR Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the exponential distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the exponential distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of Kolmogorov	-Fit Tests for T -Smirnov Test	TR Knife Steel 2
Lampiran.	55 TIK KIIIIe	Steel 2 Konnogorov-Simirnov Test
	Exponential	
DPLUS	0.348321	
DMINUS	0.616962	
DN	0.616962	
P-Value	0.0951851	

This pane shows the results of tests run to determine whether TTR Knife Steel 2 can be adequately modeled by an exponential distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 2 comes from a exponential distribution with 95% confidence.

Lampiran 56 TTR Knife Steel 2 exponential distribution

Distribution Exponential 0.8 0.6 0.4 0.2 0 1 1.03 1.06 1.09 1.12 1.15 TTR Knife Steel 2

Histogram for TTR Knife Steel 2

Uji Kesesuaian Distribusi Weibull TTR Komponen Knife Steel 2

Data variable: TTR Knife Steel 2

4 values ranging from 1.01 to 1.11

Fitted Distributions

Lampiran 57 Uji Kesesuaian Distribusi Weibull TTR Komponen Knife Steel 2

Weibull	
shape = 28.6292	
scale = 1.07139	

The StatAdvisor

This analysis shows the results of fitting a Weibull distribution to the data on TTR Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the Weibull distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the Weibull distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Goodness-of-Fit Tests for TTR Knife Steel 2

Kolmogorov-Smirnov Test

	Weibull
DPLUS	0.228849
DMINUS	0.18641
DN	0.228849
P-Value	0.984833

Lampiran 58 TTR Knife Steel 2 Kolmogorov-Smirnov Test

This pane shows the results of tests run to determine whether TTR Knife Steel 2 can be adequately modeled by a Weibull distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 2 comes from a Weibull distribution with 95% confidence.

Histogram for TTR Knife Steel 2

Uji Kesesuaian Distribusi Gamma TTR Komponen Knife Steel 2

Data variable: TTR Knife Steel 2

4 values ranging from 1.01 to 1.11

Fitted Distributions

Lampiran 60 Uji Kesesuaian Distribusi Gamma TTR Komponen Knife Steel 2

Gamma	
shape = 789.094	
scale = 749.733	

The StatAdvisor

This analysis shows the results of fitting a gamma distribution to the data on TTR Knife Steel 2. The estimated parameters of the fitted distribution are shown above. You can test whether the gamma distribution fits the data adequately by selecting Goodness-of-Fit Tests from the list of Tabular Options. You can also assess visually how well the gamma distribution fits by selecting Frequency Histogram from the list of Graphical Options. Other options within the procedure allow you to compute and

display tail areas and critical values for the distribution. To select a different distribution, press the alternate mouse button and select Analysis Options.

Kolmogorov-	Smirnov Test	
Lampiran 6	51 TTR Kni	fe Steel 2 Kolmogorov-Smirnov Test
	Gamma	
DPLUS	0.223397	
DMINUS	0.185666	
DN	0.223397	
P-Value	0.988386	

Goodness-of-Fit Tests for TTR Knife Steel 2

The StatAdvisor

This pane shows the results of tests run to determine whether TTR Knife Steel 2 can be adequately modeled by a gamma distribution.

Since the smallest P-value amongst the tests performed is greater than or equal to 0.05, we can not reject the idea that TTR Knife Steel 2 comes from a gamma distribution with 95% confidence.

Lampiran 62 TTR Knife Steel 2 gamma distribution

Histogram for TTR Knife Steel 2