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Abstract— An autonomous tram is a light rail vehicle (LRV) 

with its own rail inside the city. This vehicle uses many systems 

to help its driver maneuver the vehicle. One of those systems is 

trajectory prediction. Trajectory prediction predicts the 

collision risk between a tram and another moving object (other 

vehicle or pedestrian) around it. Kalman filter is one of the most 

used signal processing algorithms. In this research, the Kalman 

filter algorithm will be used along with Interacting Multiple 

Model to predict the trajectory of a moving object around a 

tram. That information will be used to calculate the time to 

collision (TTC) and distance to collision (DTC) that will 

determine the decision tram should take. 

Keywords— Autonomous tram, Collision, Kalman filter, 

Trajectory prediction. 

I. INTRODUCTION  

Transportation technology continuously develops to keep 
up with the era and human needs. One type of vehicle that has 
not been exempted from this development is the tram. A tram 
is a light rail vehicle (LRV) that has its own tracks within the 
city. The tram's rail system can be separate from the roadway, 
adjacent to the road but separated by supports, or integrated 
with the roadway. 

There is still a lack of awareness and discipline among road 
users [1]. This is further supported by Indonesia's limited 
experience operating trams compared to other countries. 
Implementing trams in Indonesia must be done carefully with 
safe track designs to reduce the risk of accidents and ensure 
safety, especially at intersections. Europe reported 7,535 
accidents between trams and pedestrians, resulting in 8,802 
pedestrian injuries in 2020-2021. Among them, 3% were fatal, 
23% were severe, and 74% were minor injuries [2]. Tram 
drivers are required to always pay attention to the surrounding 
situation, including pedestrians and other vehicles. Awareness 
of these situations affects the level of safety and the risk of 
tram accidents. The high number of accidents caused by trams 
supports the development of autonomous trams. Autonomous 
trams are equipped with sensors and decision-making systems 
to assist drivers in operating trams and increase safety for tram 
passengers and other road users. 

Risk assessment is used to predict the possibility of LRV 
collisions, where the system would warn the driver if a 

collision is likely. However, this assistance is limited to 
warning and stopping the tram if the driver does not respond. 
The system also needs to address collision avoidance and 
emergency braking. For such a complex system, the trajectory 
prediction of other objects on the road needs to be considered 
[3]. 

Chen et al. in [4] utilize a hybrid approach combining deep 
learning and time-varying State-Space Models (SSM), which 
can be trained end-to-end. This is made possible by a dynamic 
neural Kalman model that leverages the relative merits of both 
SSM and deep neural networks. The approach has successfully 
overcome challenges, such as single-modality estimation in 
corrupted data, a fusion of multiple sensors in missing data 
scenarios, and prediction of future trajectories. Using the Data-
driven Kalman-based method, [5] performed speed estimation 
for autonomous racing cars. In the conducted experiments, the 
performance surpasses that of the Mixed Kalman Filter 
(MKF), a well-tested algorithm used in autonomous vehicles 
(such as Pilatus). Trajectory prediction is performed by [6] 
based on the bimodal extended Kalman filter. However, the 
research target is limited to pedestrians, and trajectory 
prediction for vehicles, which will encounter trams on the 
road, has not been conducted yet. Therefore, in this study, the 
Kalman filter method is applied. This method is proposed with 
the hope that the trajectory prediction aligns with the actual 
predicted object path around the tram, ensuring the safety of 
both tram users and surrounding objects. 

Meanwhile, [7] applies a hybrid method between data-
driven and model-based Kalman filter to create KalmanNet. 
KalmanNet successfully implements the Kalman filter without 
having prior knowledge about the noise of the input used. Also 
[8] performed predictions using their custom framework 
called Prediction with Model-based Planning (PRIME), 
which, as its name suggests, utilizes a model-based generator 
to produce trajectories with explicit constraints. It enables 
accurate multimodal predictions by leveraging a learning-
based evaluator to select the most likely trajectory. After 
comparing it with the state-of-the-art methods at the time, 
PRIME achieved the lowest miss rate percentage, which was 
an official scoring metric in the Agroverse 2020 competition. 
This indicates that PRIME accurately and consistently 
predicted trajectories in various scenarios. 



Therefore, this study aims to predict the trajectory or path 
prediction to anticipate the possibility of collisions between 
autonomous trams and other objects around the tram while it 
is in motion. Path prediction plays a crucial role in 
autonomous vehicles as it allows them to effectively observe 
and understand the behavior of other vehicles around them. 
With accurate predictions of other vehicles' paths, autonomous 
vehicles can make appropriate decisions and avoid potentially 
dangerous situations. The ability to predict paths also enables 
autonomous vehicles to smoothly adjust their speed and 
direction of travel while operating in complex and changing 
traffic conditions. This method is proposed with the hope that 
trams can avoid collisions with objects around them, such as 
other vehicles and pedestrians, by predicting the paths they 
will traverse. Path prediction is a critical component in an 
autonomous vehicle system that enables vehicles to operate 
safely, efficiently, and reliably on the road. 

II. METHOD 

At each time step t, the Kalman Filter (KF) estimates xt 
based only on the new observation yt and the previous estimate 
x̂t−1, with a fixed computational complexity [9]. In the Kalman 
Filter (KF), several matrices are used for estimating and 
predicting the system state. Here are some commonly used 
matrices: 

1) State Transition Matrix (F): this matrix describes the 
relationship between the system state at time t and time t+1. It 
determines how the system state evolves. 

2) Observation Matrix (H): this matrix describes the 
relationship between the system state and the observations 
obtained. It connects the observations to the system state that 
is being estimated. 

3) Covariance Matrix of State Transition Error (Q): this 
matrix describes the uncertainty or variability in the system 
state transition over time. Matrix Q accounts for the 
uncertainty in the state transition model. 

4) Covariance Matrix of Measurement Error (R): this 
matrix describes the uncertainty or variability in the obtained 
measurements. Matrix R is used to account for the uncertainty 
in the observations. 

5) Covariance Matrix of Initial State Error (P): this 
matrix describes the uncertainty or variability in the initial 
state. Matrix P is used to account for the uncertainty in the 
initial state estimation. 

6) Kalman Gain Matrix (K): this matrix combines 
information from the prediction and actual observations. 
Matrix K describes the extent to which the actual observations 
influence the system state estimation. 

In this study, three types of Kalman Filter (KF) models are 
used: Constant Velocity (CV), Constant Acceleration (CA), 
and Constant Turn Rate (CT). The differences between these 
models lie in each model's F and H matrices. Here are the F 
and H matrices for each model [9]: 

1. Kalman Filter Constant Velocity (KFCV): ∆𝑡 here at 

(1) is a time unit in which we use 0.1 second as its value. 

a. F Matrix 

[

1 ∆𝑡 0 0
0 1  0 0
0 0 1 ∆𝑡
0 0  0 1 

]                (1) 

b. H Matrix 

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]                  (2) 

2. Kalman Filter Constant Acceleration (KFCA): Same 

as in (1), ∆𝑡 in (3) is a time unit set as 0.1 second 

a. F Matrix 

[
 
 
 
 
 
1 ∆𝑡 0.5 ∗  ∆𝑡2 0 0 0
0 1 ∆𝑡 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆𝑡 0.5 ∗  ∆𝑡2

0 0 0 0 1 ∆𝑡
0 0 0 0 0 1 ]

 
 
 
 
 

  (3) 

b. H Matrix 

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

     (4) 

3. Kalman Filter Constant Turn Rate (KFCT): In (5) ∆𝜃 
is the result of ∆𝜃 * ∆𝑡 in which ∆𝜃 is equals to 𝜋 / 180 * x. x 
is a hyperparameter with a default value set as 0.1. 

a. F Matrix 

[
 
 
 
 
1 sin(𝜃) /∆𝜃 0 −(1 − cos(𝜃) ) /∆𝜃 0
0 cos (𝜃) 0 −sin (𝜃) 0

0 (1 − cos(𝜃) ) /∆𝜃 1 sin(𝜃) /∆𝜃 0
0 sin (𝜃) 0 cos (𝜃) 0
0 0 0 0 1]

 
 
 
 

 (5) 

b. H Matrix 

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

     (6) 

In general, the state equations used in the Kalman Filter 
can be represented by the following equations: 

𝒙𝑡+1 = 𝐅𝑡 . 𝒙𝑡 + 𝑬𝑡 + 𝒘𝑡   (7) 

𝐲𝑡 = 𝐇𝑡 . 𝒙𝑡 + 𝐕𝑡    (8) 

𝒙𝒕+𝟏 in (7) represents the predicted state at time t+1, F is 
the state transition matrix, 𝑥𝑡 is the state at time t, 𝑬𝑡 is the 
control input matrix (if applicable), 𝒘𝑡is noise progress. 𝒚𝑡 in 
(8) represents the expected measurement at time t calculated 
using H, the measurement matrix multiplied by the current 



state at time t, while 𝑽𝑡 is the measurement noise. There are 
two steps in Kalman Filter: predicting and updating [9]. 
Predict step in Kalman Filter represented by the following 
equations: 

�̂�𝑡|𝑡−1 = 𝐅𝒕−𝟏 . 𝑥𝑡−1|𝑡−1 + 𝑬𝑡−1   (9) 

𝐏𝑡|𝑡−1 =  𝑭𝒕−𝟏 .  𝐏𝑡−1|𝑡−1 . 𝐅
T
𝒕−𝟏  + 𝑸𝒕−𝟏 (10) 

The update step involves utilizing the predicted (a priori) 

state estimate, denoted as  �̂�𝑡|𝑡−1 , and the expected error 

covariance, represented as 𝐏𝑡|𝑡−1  [9]. The following is the 

update step of KF: 

�̃�𝑡 = 𝐲𝑡 − 𝐇𝑡 . �̂�𝑡|𝑡−1   (11) 

𝐒𝑡 = 𝐇𝑡 .  𝐏𝑡|𝑡−1 .  H𝑡
𝑇 + 𝐑𝒕  (12) 

𝑥𝑡|𝑡 = 𝒙𝑡|𝑡−1 + 𝐊𝑡 .   𝐲�̃�   (13) 

𝑷𝑡|𝑡 = (1 − 𝑲𝑡 . 𝑯𝒕) . 𝑷𝑡−1    (14) 

𝐊𝑡 = 𝑷𝑡|𝑡−1   .  𝑯𝑡
𝑇  .   𝐒t

−1    (15) 

Using the innovation residual �̃�𝑡  and its covariance 𝐒𝑡 , 
along with the Kalman gain 𝐊𝑡 , the (a posteriori) state 
estimate �̂�𝑡|𝑡  and the estimate covariance 𝑷𝑡|𝑡  are 

determined. 
The Interacting Multiple Model Kalman Filter (IMM-KF) 

algorithm consists of four steps in its implementation, namely 
(1) interaction step, (2) filtering step, (3) model probability 
update step, and (4) combination step [4]. The state equations 
in the IMM interaction step are presented as follows. 

𝒙𝑡+1 = 𝑭𝑡
(𝑖)

 + 𝑬𝑡
(𝑖)

+ 𝒘𝑡
(𝑖)

   (16) 

𝐲𝑡 = 𝑯𝑡
(𝑖) . 𝒙𝑡 + 𝑽𝑡

(𝑖)
     (17) 

where (i) denotes the currently active model m𝑘  from the 

model set 𝑀 = 𝑚(1),𝑚(2) ,𝑚(3)  [4]. Transition probability 

from model 𝑚(𝑖) to model 𝑚(𝑗)  is as follows. 

 

𝑷𝒓( 𝒎𝑡 =  𝒎(𝑖)) = 𝝅𝑖𝑗           (18) 

 

𝒎𝑡 ∈ M is the current active model at t time and transition 

probability denoted as 𝝅𝑖𝑗 with a value between 0 and 1. The 

basic principle used in IMM-KF is the separate filtering of 

each model 𝒎(𝑖), which is used in parallel, and the estimation 

results are used to estimate the probabilities of each active 

𝒎(𝑖). The individual filter estimates in the interaction stage 

are combined to initialize each filter.  

 

𝒄(𝑖) = ∑ 𝝅 . 𝒋 . 𝒊 . 𝝁𝑡−1
(𝑗)𝑀

𝑗=1     (19) 

𝝁𝑡−1|𝑡−1
(𝑗|𝑖)

= 
𝜋𝑗𝑖 .𝜇𝑡−1

(𝑗)

𝑐(𝑖)     (20) 

𝒙𝑘−1|𝑡−1
− (𝑖) =  ∑ 𝝁𝑡−1|𝑡−1

(𝑗|𝑖)  .  �̂�𝑡−1|𝑡−1
− (𝑗)𝑀

𝑗=1  (21) 

𝑷𝑡−1|𝑡−1
− (𝑖) =  ∑ 𝝁𝑡−1|𝑡−1

(𝑗|𝑖)  .  (𝑷𝑡−1|𝑡−1
− (𝑗)

+ 𝑿𝑡−1|𝑡−1
− (𝑖,𝑗)𝑀

𝑗=1   (22) 

using 𝑿𝑡|𝑡
− (𝑖,𝑗)

= (𝒙𝑡|𝑡
−(𝑖) − 𝒙𝑡|𝑡

−(𝑗) ) (𝒙𝑡|𝑡
−(𝑖) − 𝒙𝑡|𝑡

−(𝑗))
𝑇

, the 

conditional model probability 𝝁𝑡−1|𝑡−1
(𝑗|𝑖)

of transitioning from 

𝒎(𝑗)  to 𝒎(𝑖) , the estimated state of each filter �̂�𝑡−1|𝑡−1
− (𝑗)

, its 

covariance 𝑷𝑡−1|𝑡−1
− (𝑖)

, the mixing of the state estimates 

𝒙𝑡−1|𝑡−1
− (𝑖)

, and its covariance 𝑷𝑡−1|𝑡−1
− (𝑗)

 [9]. In the filtering step, 

each filter M is executed separately as shown in (16) and (17) 

to obtain the innovation residual �̃�𝑡
(𝑖)

 and covariance 𝑺𝑡
(𝑖)

, as 

well as the state estimate �̂�𝑡|𝑡
(𝑖)

 and covariance 𝑷𝑡|𝑡
(𝑖)

. The KF 

models for Constant Velocity, Constant Acceleration, and 
Constant Turn Rate are represented by equations (1), (3), and 
(5) respectively. In the probability update stage, the 
innovation residual from each model is used to update the 
model probabilities [9]. 

𝑳𝑡
(𝑖) =  

exp(−
1

2
 .  �̃�𝑡

(𝑖)
𝑇
. 𝑺𝑡

(𝑖)
−1

.  �̃�𝑡
(𝑗)

)

|2𝜋 .𝑺𝑡
(𝑗)

|
1 2⁄     (23) 

𝝁𝑘
(𝑖)

=  
𝒄(𝑖).  𝐿𝑡

(𝒊)

∑ 𝒄(𝑖).  𝐿𝑡
(𝒊)𝑀

𝑗=1

     (24) 

where 𝑳𝑡
(𝑖)

 represents the likelihood of the observation when 

considering �̃�𝑡
(𝑖)

 and the updated model probability 𝝁𝑘
(𝑖)

. 

During the combination step, each model's state estimates and 
covariances are mixed and weighted by the updated model 
probabilities. This process ensures that the final estimate 
incorporates information from all the models based on their 
respective probabilities.  

�̂�𝑡|𝑡 =  ∑ 𝝁𝑡
(𝑖).  �̂�𝑡|𝑡

(𝑖)𝑀
𝑖=1      (25) 

𝑷𝑡|𝑡 = ∑ 𝝁𝑡
(𝑖)𝑀

𝑖=1 . (𝑷𝑡|𝑡
(𝑖)

+ (�̂�𝑡|𝑡 − �̂�𝑡|𝑡
(𝑖)

) (�̂�𝑡|𝑡 − �̂�𝑡|𝑡
(𝑖)

)
𝑇
)  (26) 

 

TTC (Time To Collision) is a time-based measure used to 

assess the safety level between objects [10]. If no evasive 

action is taken, it is the remaining time before two or more 

objects collide. This index is crucial in designing collision 

avoidance systems [11] and considering when and how 

drivers should adjust speed. TTC can be calculated using the 

following formula [12]: 

𝑇𝑇𝐶𝑡(𝑡) = 
𝑋𝑜(𝑡)− 𝑋𝑡(𝑡)− 𝑙o

�̇�t(𝑡)− �̇�o(𝑡)
   (27) 

𝐷𝑇𝐶𝑡(𝑡) =  𝑇𝑇𝐶𝑡 . �̇�t   (28) 

where t and o denote ego vehicle and object, respectively. 𝑋 

marks the location while �̇� refers to the speed and 𝑙o is the 
length of the object. A threshold value typically determines 
the time threshold for acting in collision avoidance situations. 
This threshold value is used to differentiate between safe and 
unsafe conditions. The threshold value of TTC depends on 



driver behavior, so no exact value distinguishes between safe 
and hazardous situations. Using a threshold of 4 or 5 seconds 
often leads to a higher occurrence of false alarms than a 
threshold of 3 seconds [13]. Drivers without driver assistance 
systems typically exhibit a minimum threshold of 3-5 
seconds, while drivers with driver assistance systems have a 
threshold of 2.6 seconds [14]. 

III. RESULT AND DISCUSSION 

A. Testing Scenario 

The trajectory prediction system will be tested in the Carla 

simulator. A fire truck vehicle will represent the tram as the 

ego vehicle. The vehicle will drive on a single lane to simulate 

the tram running from one station to another. TTC (Time to 

Collision), DTC (Distance to Collision), waypoints, the 

location of other objects relative to the tram, and object 

trajectory predictions will be displayed on a GUI plot 

application. The testing aims to verify if the displayed 

trajectory predictions align with expectations and if the data 

is passed to the safety assessment system. The testing will be 
conducted on one of the following two maps: Town02 (Fig. 

1) or Town10 (Fig. 2). 

 

 
 

Fig.1, Carla map Town02  

 

 
 
Fig.2. Carla map Town10  
 

The testing will be conducted 50 times, using 50 vehicles 

and 32 pedestrians as objects. The test is successful if the tram 

(represented by a fire truck sprite) successfully travels from 
the starting point to the endpoint without colliding with any 

other objects. Testing can also be performed by keeping the 

tram stationary and introducing a moving vehicle around it to 

serve as input for trajectory prediction. Alternatively, an 

object can be stationary while the tram moves towards it to 

test the track's object detection sensors. These two methods 

can serve as alternatives for developing and testing specific 

algorithms, especially for evaluating small changes made to 

the system. 

B. KFCV Stress Test 

A stress test was conducted using the Carla simulation 

software, utilizing one of the default maps, Town 2, as shown 

in Fig.1 . A run is considered successful if the tram starts from 

point 1 in Figure and travels to point 2 along the path 

indicated in Fig.3 without experiencing any collisions or 

contact with other objects (vehicles and pedestrians). 

 
Out of the 50 test runs performed, 80% were successful, 

while the remaining 20% failed for various reasons. One of 

the reasons was a problem with the filter-detecting vehicles 

on the tram tracks. During the test, the filter could only detect 

vehicles on the tracks facing the same direction as the tram. 

Therefore, the next step is to improve the object detection 

filter for vehicles on the tram tracks. 

 

 
 
Fig.3, KFCV stress test route from “1” to “2” 

 

 
 

Fig.4, Predicted object trajectory using Kalman Filter Constant Velocity 

(KFCV) considered not good enough on turning road 

 



C. KFCV Stress Test (Post Filter Fix) 

The stress test was conducted following the same rules as 

before. This stage resulted in a success rate of 84%, a 4% 

improvement from the previous testing. However, the 

obtained trajectory predictions were still considered 

insufficient and too linear during turns (Fig. 4). Therefore, it 

was decided to switch to the IMM Kalman filter algorithm for 
trajectory prediction. 

 

D. IMM-KF Stress Test 

IMM (Interacting Multiple Model) successfully predicts 

object trajectories much better than KFCV, as seen in Fig.5. 

For the 50 test runs, the testing rules and environment 

remained the same as the previous KFCV algorithm testing. 

After conducting 50 total test runs, a success rate of 84% was 

achieved. 90% of collisions were due to imperfect detection 

of objects on the tram tracks, as shown in the figure. The 

sensors use object coordinates, which represent the object's 

center point, to determine whether the object is on the tracks. 

However, the sensors fail because only a portion of the object 

is on the tracks, while the center point or object coordinates 

are still outside. Therefore, the decision-making component 

will attempt to address this issue. Meanwhile, the IMM 

algorithm will go through a hyperparameter tuning phase to 
maximize the results obtained. 

 

 
 

Fig.5, Predicted trajectory using Interacting Multiple Model Kalman 

Filter (IMM-KF) 
 

 
 

Fig.6, Object on the rail not detected by the sensor.  

 

 
 

Fig.7, Object on the rail detected. 

E. IMM-KF Tuning 

To find the best results from the IMM algorithm, tuning is 

performed on its hyperparameters. The hyperparameters 
being tuned are the weight variables of the transition matrix 

and the value of θ ̇ (theta). The initial settings before tuning, 

which were used in the previous stress test, are as follows: 

𝑃 = [
0,98
0,01
0,01

0,01
0,98
0,01

0,01
0,01
0,98

]   (28) 

With �̇� = 0,1 radian, max iteration = 100 and max predicted 

range = 20 meter. 

In the transition matrix P (11), the first row contains the 

CV, CA, and CT weights, respectively. The second row 

contains CT, CV, and CA weights, and the third row contains 

CA, CT, and CV weights. These weights determine the 

influence of each model's output value. The value of θ ̇ 

determines the extent to which the vehicle's inclination affects 

the CT prediction, indirectly influencing the final prediction 

of IMM for the turning vehicle. The predicted trajectory 

distance tends to be directly proportional to the maximum 

iteration, meaning that a higher maximum iteration will result 

in a longer predicted trajectory. However, the trajectory 

length will not exceed the maximum distance limit. After the 
tuning process, the suitable hyperparameters obtained are as 

follows: 

𝑃 = [
0,9

0,025
0,075

0,075
0,9

0,025

0,025
0,075
0,9

]   (12) 

With �̇� = 1.5 radian, max iteration = 300 and max predicted 

range = 20 meter.  

By reducing the weight of CV and increasing the weights 

of CA and CT, the algorithm can predict trajectories much 

better in turning roads. Additionally, by increasing the value 

of θ ̇ to 1.5 radians from the previous 0.1 radians, the 

algorithm can predict far-reaching turning trajectories even 

before the object approaches the turn. This can be observed 

in Fig. 8 and Fig. 9, where in Fig. 8, accurate predictions 

occur just before the object turns, while in Fig. 9, correct 
predictions can occur even when the object is still relatively 

moving straight. Increasing the maximum number of 

iterations also extends the predicted trajectory, allowing the 

tram to make decisions more quickly. In the previous 

maximum of 100 iterations, the predicted distance often did 

not reach the maximum distance, so the maximum iteration 



value was increased during the tuning process. It can also be 
seen in Fig. 9 that the resulting predicted trajectory is longer 

compared to the IMM algorithm's results before the tuning 

process. 

 

 
 
Fig.8, IMM-KF prediction result before tuning process 

 

 

 
Fig.8, IMM-KF prediction result after tuning process 

 

F. IMM-KF Stress Test (Post Tuning) 

This time, the testing was conducted on a straight path 

(Fig.10) but passed several intersections. The testing used the 
algorithm that has undergone hyperparameter tuning and the 

new Finite State Machine design for the decision-making 

component. It achieved a success rate of 92%, an increase of 

8% compared to the testing before the IMM algorithm 

underwent hyperparameter tuning. 3 out of 4 failures occurred 

due to inaccurate timing of TTC and DTC communicated to 

the decision-making component. This could be due to poor 

prediction results or a loss in the risk assessment component 

to calculate DTC and TTC accurately. 

 

 
 

Fig.10, IMM-KF stress test post tuning route 

IV. CONCLUSION 

The IMM-KF algorithm has proven successful as an 
autonomous tram trajectory prediction algorithm, with a 
success rate of 92% in a total of 50 test runs. This demonstrates 
its potential for application in autonomous trams, with room 

for further development. From the latest test results, there is 
still an 8% error margin that can be minimized through further 
refinement. Trajectory prediction plays a significant role in 
decision-making to avoid and maintain distance from other 
objects on the road, including but not limited to cars and 
pedestrians. There is a need for more discrete testing methods 
to compare the prediction results with the actual state that 
occurs. This is because the number of predicted coordinates 
can be many times greater than the number of existing data 
coordinates. 
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