
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Trajectory Prediction Using Kalman Filter Method

As Collision Risk Assessment On Autonomous

Tram

 1st Fajar Astuti Hermawati

Informatic Department

Universitas 17 Agustus 1945 Surabaya
Surabaya, Indonesia

fajarastuti@untag-sby.ac.id

4th Khansa Salsabila Suhaimi

School of Electrical Engineering and
Informatics

 Institut Teknologi Bandung

Bandung, Indonesia

23220006@std.stei.itb.ac.id

 2nd Nizar Fadila Anhari

Informatic Department

Universitas 17 Agustus 1945 Surabaya
Surabaya, Indonesia

nizarfadila@gmail.com

5th Rini Nur Fatimah

School of Electrical Engineering and
Informatics

 Institut Teknologi Bandung

Bandung, Indonesia

rini.rnf@gmail.com

3rd Bambang Riyanto Trilaksono

School of Electrical Engineering and

Informatics
 Institut Teknologi Bandung

Bandung, Indonesia
briyanto@lskk.ee.itb.ac.id

Abstract— An autonomous tram is a light rail vehicle (LRV)

with its own rail inside the city. This vehicle uses many systems

to help its driver maneuver the vehicle. One of those systems is

trajectory prediction. Trajectory prediction predicts the

collision risk between a tram and another moving object (other

vehicle or pedestrian) around it. Kalman filter is one of the most

used signal processing algorithms. In this research, the Kalman

filter algorithm will be used along with Interacting Multiple

Model to predict the trajectory of a moving object around a

tram. That information will be used to calculate the time to

collision (TTC) and distance to collision (DTC) that will

determine the decision tram should take.

Keywords— Autonomous tram, Collision, Kalman filter,

Trajectory prediction.

I. INTRODUCTION

Transportation technology continuously develops to keep
up with the era and human needs. One type of vehicle that has
not been exempted from this development is the tram. A tram
is a light rail vehicle (LRV) that has its own tracks within the
city. The tram's rail system can be separate from the roadway,
adjacent to the road but separated by supports, or integrated
with the roadway.

There is still a lack of awareness and discipline among road
users [1]. This is further supported by Indonesia's limited
experience operating trams compared to other countries.
Implementing trams in Indonesia must be done carefully with
safe track designs to reduce the risk of accidents and ensure
safety, especially at intersections. Europe reported 7,535
accidents between trams and pedestrians, resulting in 8,802
pedestrian injuries in 2020-2021. Among them, 3% were fatal,
23% were severe, and 74% were minor injuries [2]. Tram
drivers are required to always pay attention to the surrounding
situation, including pedestrians and other vehicles. Awareness
of these situations affects the level of safety and the risk of
tram accidents. The high number of accidents caused by trams
supports the development of autonomous trams. Autonomous
trams are equipped with sensors and decision-making systems
to assist drivers in operating trams and increase safety for tram
passengers and other road users.

Risk assessment is used to predict the possibility of LRV
collisions, where the system would warn the driver if a

collision is likely. However, this assistance is limited to
warning and stopping the tram if the driver does not respond.
The system also needs to address collision avoidance and
emergency braking. For such a complex system, the trajectory
prediction of other objects on the road needs to be considered
[3].

Chen et al. in [4] utilize a hybrid approach combining deep
learning and time-varying State-Space Models (SSM), which
can be trained end-to-end. This is made possible by a dynamic
neural Kalman model that leverages the relative merits of both
SSM and deep neural networks. The approach has successfully
overcome challenges, such as single-modality estimation in
corrupted data, a fusion of multiple sensors in missing data
scenarios, and prediction of future trajectories. Using the Data-
driven Kalman-based method, [5] performed speed estimation
for autonomous racing cars. In the conducted experiments, the
performance surpasses that of the Mixed Kalman Filter
(MKF), a well-tested algorithm used in autonomous vehicles
(such as Pilatus). Trajectory prediction is performed by [6]
based on the bimodal extended Kalman filter. However, the
research target is limited to pedestrians, and trajectory
prediction for vehicles, which will encounter trams on the
road, has not been conducted yet. Therefore, in this study, the
Kalman filter method is applied. This method is proposed with
the hope that the trajectory prediction aligns with the actual
predicted object path around the tram, ensuring the safety of
both tram users and surrounding objects.

Meanwhile, [7] applies a hybrid method between data-
driven and model-based Kalman filter to create KalmanNet.
KalmanNet successfully implements the Kalman filter without
having prior knowledge about the noise of the input used. Also
[8] performed predictions using their custom framework
called Prediction with Model-based Planning (PRIME),
which, as its name suggests, utilizes a model-based generator
to produce trajectories with explicit constraints. It enables
accurate multimodal predictions by leveraging a learning-
based evaluator to select the most likely trajectory. After
comparing it with the state-of-the-art methods at the time,
PRIME achieved the lowest miss rate percentage, which was
an official scoring metric in the Agroverse 2020 competition.
This indicates that PRIME accurately and consistently
predicted trajectories in various scenarios.

Therefore, this study aims to predict the trajectory or path
prediction to anticipate the possibility of collisions between
autonomous trams and other objects around the tram while it
is in motion. Path prediction plays a crucial role in
autonomous vehicles as it allows them to effectively observe
and understand the behavior of other vehicles around them.
With accurate predictions of other vehicles' paths, autonomous
vehicles can make appropriate decisions and avoid potentially
dangerous situations. The ability to predict paths also enables
autonomous vehicles to smoothly adjust their speed and
direction of travel while operating in complex and changing
traffic conditions. This method is proposed with the hope that
trams can avoid collisions with objects around them, such as
other vehicles and pedestrians, by predicting the paths they
will traverse. Path prediction is a critical component in an
autonomous vehicle system that enables vehicles to operate
safely, efficiently, and reliably on the road.

II. METHOD

At each time step t, the Kalman Filter (KF) estimates xt
based only on the new observation yt and the previous estimate
x̂t−1, with a fixed computational complexity [9]. In the Kalman
Filter (KF), several matrices are used for estimating and
predicting the system state. Here are some commonly used
matrices:

1) State Transition Matrix (F): this matrix describes the
relationship between the system state at time t and time t+1. It
determines how the system state evolves.

2) Observation Matrix (H): this matrix describes the
relationship between the system state and the observations
obtained. It connects the observations to the system state that
is being estimated.

3) Covariance Matrix of State Transition Error (Q): this
matrix describes the uncertainty or variability in the system
state transition over time. Matrix Q accounts for the
uncertainty in the state transition model.

4) Covariance Matrix of Measurement Error (R): this
matrix describes the uncertainty or variability in the obtained
measurements. Matrix R is used to account for the uncertainty
in the observations.

5) Covariance Matrix of Initial State Error (P): this
matrix describes the uncertainty or variability in the initial
state. Matrix P is used to account for the uncertainty in the
initial state estimation.

6) Kalman Gain Matrix (K): this matrix combines
information from the prediction and actual observations.
Matrix K describes the extent to which the actual observations
influence the system state estimation.

In this study, three types of Kalman Filter (KF) models are
used: Constant Velocity (CV), Constant Acceleration (CA),
and Constant Turn Rate (CT). The differences between these
models lie in each model's F and H matrices. Here are the F
and H matrices for each model [9]:

1. Kalman Filter Constant Velocity (KFCV): ∆𝑡 here at

(1) is a time unit in which we use 0.1 second as its value.

a. F Matrix

[

1 ∆𝑡 0 0
0 1 0 0
0 0 1 ∆𝑡
0 0 0 1

] (1)

b. H Matrix

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (2)

2. Kalman Filter Constant Acceleration (KFCA): Same

as in (1), ∆𝑡 in (3) is a time unit set as 0.1 second

a. F Matrix

[

1 ∆𝑡 0.5 ∗ ∆𝑡2 0 0 0
0 1 ∆𝑡 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆𝑡 0.5 ∗ ∆𝑡2

0 0 0 0 1 ∆𝑡
0 0 0 0 0 1]

 (3)

b. H Matrix

[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 (4)

3. Kalman Filter Constant Turn Rate (KFCT): In (5) ∆𝜃
is the result of ∆𝜃 * ∆𝑡 in which ∆𝜃 is equals to 𝜋 / 180 * x. x
is a hyperparameter with a default value set as 0.1.

a. F Matrix

[

1 sin(𝜃) /∆𝜃 0 −(1 − cos(𝜃)) /∆𝜃 0
0 cos (𝜃) 0 −sin (𝜃) 0

0 (1 − cos(𝜃)) /∆𝜃 1 sin(𝜃) /∆𝜃 0
0 sin (𝜃) 0 cos (𝜃) 0
0 0 0 0 1]

 (5)

b. H Matrix

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 (6)

In general, the state equations used in the Kalman Filter
can be represented by the following equations:

𝒙𝑡+1 = 𝐅𝑡 . 𝒙𝑡 + 𝑬𝑡 + 𝒘𝑡 (7)

𝐲𝑡 = 𝐇𝑡 . 𝒙𝑡 + 𝐕𝑡 (8)

𝒙𝒕+𝟏 in (7) represents the predicted state at time t+1, F is
the state transition matrix, 𝑥𝑡 is the state at time t, 𝑬𝑡 is the
control input matrix (if applicable), 𝒘𝑡is noise progress. 𝒚𝑡 in
(8) represents the expected measurement at time t calculated
using H, the measurement matrix multiplied by the current

state at time t, while 𝑽𝑡 is the measurement noise. There are
two steps in Kalman Filter: predicting and updating [9].
Predict step in Kalman Filter represented by the following
equations:

�̂�𝑡|𝑡−1 = 𝐅𝒕−𝟏 . 𝑥𝑡−1|𝑡−1 + 𝑬𝑡−1 (9)

𝐏𝑡|𝑡−1 = 𝑭𝒕−𝟏 . 𝐏𝑡−1|𝑡−1 . 𝐅
T
𝒕−𝟏 + 𝑸𝒕−𝟏 (10)

The update step involves utilizing the predicted (a priori)

state estimate, denoted as �̂�𝑡|𝑡−1 , and the expected error

covariance, represented as 𝐏𝑡|𝑡−1 [9]. The following is the

update step of KF:

�̃�𝑡 = 𝐲𝑡 − 𝐇𝑡 . �̂�𝑡|𝑡−1 (11)

𝐒𝑡 = 𝐇𝑡 . 𝐏𝑡|𝑡−1 . H𝑡
𝑇 + 𝐑𝒕 (12)

𝑥𝑡|𝑡 = 𝒙𝑡|𝑡−1 + 𝐊𝑡 . 𝐲�̃� (13)

𝑷𝑡|𝑡 = (1 − 𝑲𝑡 . 𝑯𝒕) . 𝑷𝑡−1 (14)

𝐊𝑡 = 𝑷𝑡|𝑡−1 . 𝑯𝑡
𝑇 . 𝐒t

−1 (15)

Using the innovation residual �̃�𝑡 and its covariance 𝐒𝑡 ,
along with the Kalman gain 𝐊𝑡 , the (a posteriori) state
estimate �̂�𝑡|𝑡 and the estimate covariance 𝑷𝑡|𝑡 are

determined.
The Interacting Multiple Model Kalman Filter (IMM-KF)

algorithm consists of four steps in its implementation, namely
(1) interaction step, (2) filtering step, (3) model probability
update step, and (4) combination step [4]. The state equations
in the IMM interaction step are presented as follows.

𝒙𝑡+1 = 𝑭𝑡
(𝑖)

 + 𝑬𝑡
(𝑖)

+ 𝒘𝑡
(𝑖)

 (16)

𝐲𝑡 = 𝑯𝑡
(𝑖) . 𝒙𝑡 + 𝑽𝑡

(𝑖)
 (17)

where (i) denotes the currently active model m𝑘 from the

model set 𝑀 = 𝑚(1),𝑚(2) ,𝑚(3) [4]. Transition probability

from model 𝑚(𝑖) to model 𝑚(𝑗) is as follows.

𝑷𝒓(𝒎𝑡 = 𝒎(𝑖)) = 𝝅𝑖𝑗 (18)

𝒎𝑡 ∈ M is the current active model at t time and transition

probability denoted as 𝝅𝑖𝑗 with a value between 0 and 1. The

basic principle used in IMM-KF is the separate filtering of

each model 𝒎(𝑖), which is used in parallel, and the estimation

results are used to estimate the probabilities of each active

𝒎(𝑖). The individual filter estimates in the interaction stage

are combined to initialize each filter.

𝒄(𝑖) = ∑ 𝝅 . 𝒋 . 𝒊 . 𝝁𝑡−1
(𝑗)𝑀

𝑗=1 (19)

𝝁𝑡−1|𝑡−1
(𝑗|𝑖)

=
𝜋𝑗𝑖 .𝜇𝑡−1

(𝑗)

𝑐(𝑖) (20)

𝒙𝑘−1|𝑡−1
− (𝑖) = ∑ 𝝁𝑡−1|𝑡−1

(𝑗|𝑖) . �̂�𝑡−1|𝑡−1
− (𝑗)𝑀

𝑗=1 (21)

𝑷𝑡−1|𝑡−1
− (𝑖) = ∑ 𝝁𝑡−1|𝑡−1

(𝑗|𝑖) . (𝑷𝑡−1|𝑡−1
− (𝑗)

+ 𝑿𝑡−1|𝑡−1
− (𝑖,𝑗)𝑀

𝑗=1 (22)

using 𝑿𝑡|𝑡
− (𝑖,𝑗)

= (𝒙𝑡|𝑡
−(𝑖) − 𝒙𝑡|𝑡

−(𝑗)) (𝒙𝑡|𝑡
−(𝑖) − 𝒙𝑡|𝑡

−(𝑗))
𝑇

, the

conditional model probability 𝝁𝑡−1|𝑡−1
(𝑗|𝑖)

of transitioning from

𝒎(𝑗) to 𝒎(𝑖) , the estimated state of each filter �̂�𝑡−1|𝑡−1
− (𝑗)

, its

covariance 𝑷𝑡−1|𝑡−1
− (𝑖)

, the mixing of the state estimates

𝒙𝑡−1|𝑡−1
− (𝑖)

, and its covariance 𝑷𝑡−1|𝑡−1
− (𝑗)

 [9]. In the filtering step,

each filter M is executed separately as shown in (16) and (17)

to obtain the innovation residual �̃�𝑡
(𝑖)

 and covariance 𝑺𝑡
(𝑖)

, as

well as the state estimate �̂�𝑡|𝑡
(𝑖)

 and covariance 𝑷𝑡|𝑡
(𝑖)

. The KF

models for Constant Velocity, Constant Acceleration, and
Constant Turn Rate are represented by equations (1), (3), and
(5) respectively. In the probability update stage, the
innovation residual from each model is used to update the
model probabilities [9].

𝑳𝑡
(𝑖) =

exp(−
1

2
 . �̃�𝑡

(𝑖)
𝑇
. 𝑺𝑡

(𝑖)
−1

. �̃�𝑡
(𝑗)

)

|2𝜋 .𝑺𝑡
(𝑗)

|
1 2⁄ (23)

𝝁𝑘
(𝑖)

=
𝒄(𝑖). 𝐿𝑡

(𝒊)

∑ 𝒄(𝑖). 𝐿𝑡
(𝒊)𝑀

𝑗=1

 (24)

where 𝑳𝑡
(𝑖)

 represents the likelihood of the observation when

considering �̃�𝑡
(𝑖)

 and the updated model probability 𝝁𝑘
(𝑖)

.

During the combination step, each model's state estimates and
covariances are mixed and weighted by the updated model
probabilities. This process ensures that the final estimate
incorporates information from all the models based on their
respective probabilities.

�̂�𝑡|𝑡 = ∑ 𝝁𝑡
(𝑖). �̂�𝑡|𝑡

(𝑖)𝑀
𝑖=1 (25)

𝑷𝑡|𝑡 = ∑ 𝝁𝑡
(𝑖)𝑀

𝑖=1 . (𝑷𝑡|𝑡
(𝑖)

+ (�̂�𝑡|𝑡 − �̂�𝑡|𝑡
(𝑖)

) (�̂�𝑡|𝑡 − �̂�𝑡|𝑡
(𝑖)

)
𝑇
) (26)

TTC (Time To Collision) is a time-based measure used to

assess the safety level between objects [10]. If no evasive

action is taken, it is the remaining time before two or more

objects collide. This index is crucial in designing collision

avoidance systems [11] and considering when and how

drivers should adjust speed. TTC can be calculated using the

following formula [12]:

𝑇𝑇𝐶𝑡(𝑡) =
𝑋𝑜(𝑡)− 𝑋𝑡(𝑡)− 𝑙o

�̇�t(𝑡)− �̇�o(𝑡)
 (27)

𝐷𝑇𝐶𝑡(𝑡) = 𝑇𝑇𝐶𝑡 . �̇�t (28)

where t and o denote ego vehicle and object, respectively. 𝑋

marks the location while �̇� refers to the speed and 𝑙o is the
length of the object. A threshold value typically determines
the time threshold for acting in collision avoidance situations.
This threshold value is used to differentiate between safe and
unsafe conditions. The threshold value of TTC depends on

driver behavior, so no exact value distinguishes between safe
and hazardous situations. Using a threshold of 4 or 5 seconds
often leads to a higher occurrence of false alarms than a
threshold of 3 seconds [13]. Drivers without driver assistance
systems typically exhibit a minimum threshold of 3-5
seconds, while drivers with driver assistance systems have a
threshold of 2.6 seconds [14].

III. RESULT AND DISCUSSION

A. Testing Scenario

The trajectory prediction system will be tested in the Carla

simulator. A fire truck vehicle will represent the tram as the

ego vehicle. The vehicle will drive on a single lane to simulate

the tram running from one station to another. TTC (Time to

Collision), DTC (Distance to Collision), waypoints, the

location of other objects relative to the tram, and object

trajectory predictions will be displayed on a GUI plot

application. The testing aims to verify if the displayed

trajectory predictions align with expectations and if the data

is passed to the safety assessment system. The testing will be
conducted on one of the following two maps: Town02 (Fig.

1) or Town10 (Fig. 2).

Fig.1, Carla map Town02

Fig.2. Carla map Town10

The testing will be conducted 50 times, using 50 vehicles

and 32 pedestrians as objects. The test is successful if the tram

(represented by a fire truck sprite) successfully travels from
the starting point to the endpoint without colliding with any

other objects. Testing can also be performed by keeping the

tram stationary and introducing a moving vehicle around it to

serve as input for trajectory prediction. Alternatively, an

object can be stationary while the tram moves towards it to

test the track's object detection sensors. These two methods

can serve as alternatives for developing and testing specific

algorithms, especially for evaluating small changes made to

the system.

B. KFCV Stress Test

A stress test was conducted using the Carla simulation

software, utilizing one of the default maps, Town 2, as shown

in Fig.1 . A run is considered successful if the tram starts from

point 1 in Figure and travels to point 2 along the path

indicated in Fig.3 without experiencing any collisions or

contact with other objects (vehicles and pedestrians).

Out of the 50 test runs performed, 80% were successful,

while the remaining 20% failed for various reasons. One of

the reasons was a problem with the filter-detecting vehicles

on the tram tracks. During the test, the filter could only detect

vehicles on the tracks facing the same direction as the tram.

Therefore, the next step is to improve the object detection

filter for vehicles on the tram tracks.

Fig.3, KFCV stress test route from “1” to “2”

Fig.4, Predicted object trajectory using Kalman Filter Constant Velocity

(KFCV) considered not good enough on turning road

C. KFCV Stress Test (Post Filter Fix)

The stress test was conducted following the same rules as

before. This stage resulted in a success rate of 84%, a 4%

improvement from the previous testing. However, the

obtained trajectory predictions were still considered

insufficient and too linear during turns (Fig. 4). Therefore, it

was decided to switch to the IMM Kalman filter algorithm for
trajectory prediction.

D. IMM-KF Stress Test

IMM (Interacting Multiple Model) successfully predicts

object trajectories much better than KFCV, as seen in Fig.5.

For the 50 test runs, the testing rules and environment

remained the same as the previous KFCV algorithm testing.

After conducting 50 total test runs, a success rate of 84% was

achieved. 90% of collisions were due to imperfect detection

of objects on the tram tracks, as shown in the figure. The

sensors use object coordinates, which represent the object's

center point, to determine whether the object is on the tracks.

However, the sensors fail because only a portion of the object

is on the tracks, while the center point or object coordinates

are still outside. Therefore, the decision-making component

will attempt to address this issue. Meanwhile, the IMM

algorithm will go through a hyperparameter tuning phase to
maximize the results obtained.

Fig.5, Predicted trajectory using Interacting Multiple Model Kalman

Filter (IMM-KF)

Fig.6, Object on the rail not detected by the sensor.

Fig.7, Object on the rail detected.

E. IMM-KF Tuning

To find the best results from the IMM algorithm, tuning is

performed on its hyperparameters. The hyperparameters
being tuned are the weight variables of the transition matrix

and the value of θ ̇ (theta). The initial settings before tuning,

which were used in the previous stress test, are as follows:

𝑃 = [
0,98
0,01
0,01

0,01
0,98
0,01

0,01
0,01
0,98

] (28)

With �̇� = 0,1 radian, max iteration = 100 and max predicted

range = 20 meter.

In the transition matrix P (11), the first row contains the

CV, CA, and CT weights, respectively. The second row

contains CT, CV, and CA weights, and the third row contains

CA, CT, and CV weights. These weights determine the

influence of each model's output value. The value of θ ̇

determines the extent to which the vehicle's inclination affects

the CT prediction, indirectly influencing the final prediction

of IMM for the turning vehicle. The predicted trajectory

distance tends to be directly proportional to the maximum

iteration, meaning that a higher maximum iteration will result

in a longer predicted trajectory. However, the trajectory

length will not exceed the maximum distance limit. After the
tuning process, the suitable hyperparameters obtained are as

follows:

𝑃 = [
0,9

0,025
0,075

0,075
0,9

0,025

0,025
0,075
0,9

] (12)

With �̇� = 1.5 radian, max iteration = 300 and max predicted

range = 20 meter.

By reducing the weight of CV and increasing the weights

of CA and CT, the algorithm can predict trajectories much

better in turning roads. Additionally, by increasing the value

of θ ̇ to 1.5 radians from the previous 0.1 radians, the

algorithm can predict far-reaching turning trajectories even

before the object approaches the turn. This can be observed

in Fig. 8 and Fig. 9, where in Fig. 8, accurate predictions

occur just before the object turns, while in Fig. 9, correct
predictions can occur even when the object is still relatively

moving straight. Increasing the maximum number of

iterations also extends the predicted trajectory, allowing the

tram to make decisions more quickly. In the previous

maximum of 100 iterations, the predicted distance often did

not reach the maximum distance, so the maximum iteration

value was increased during the tuning process. It can also be
seen in Fig. 9 that the resulting predicted trajectory is longer

compared to the IMM algorithm's results before the tuning

process.

Fig.8, IMM-KF prediction result before tuning process

Fig.8, IMM-KF prediction result after tuning process

F. IMM-KF Stress Test (Post Tuning)

This time, the testing was conducted on a straight path

(Fig.10) but passed several intersections. The testing used the
algorithm that has undergone hyperparameter tuning and the

new Finite State Machine design for the decision-making

component. It achieved a success rate of 92%, an increase of

8% compared to the testing before the IMM algorithm

underwent hyperparameter tuning. 3 out of 4 failures occurred

due to inaccurate timing of TTC and DTC communicated to

the decision-making component. This could be due to poor

prediction results or a loss in the risk assessment component

to calculate DTC and TTC accurately.

Fig.10, IMM-KF stress test post tuning route

IV. CONCLUSION

The IMM-KF algorithm has proven successful as an
autonomous tram trajectory prediction algorithm, with a
success rate of 92% in a total of 50 test runs. This demonstrates
its potential for application in autonomous trams, with room

for further development. From the latest test results, there is
still an 8% error margin that can be minimized through further
refinement. Trajectory prediction plays a significant role in
decision-making to avoid and maintain distance from other
objects on the road, including but not limited to cars and
pedestrians. There is a need for more discrete testing methods
to compare the prediction results with the actual state that
occurs. This is because the number of predicted coordinates
can be many times greater than the number of existing data
coordinates.

ACKNOWLEDGMENT

This research work was supported in part by Universitas
17 Agustus 1945 Surabaya under the Research Program in the
Institutional Support System Competition Program –
Independent Campus (PK-KM) and in part by Institut
Teknologi Bandung under the Autonomous Tram Research.

REFERENCES

[1] M. Damayanti, S. Malkhamah, and K. Walker, “Tramway

Management System In Indonesia,” Journal of the Civil Engineering

Forum, vol. 1, no. 1, 2015.

[2] C. Lackner et al., “Tram to Pedestrian Collisions—Priorities and

Potentials,” Frontiers in Future Transportation, vol. 3, Jun. 2022, doi:

10.3389/ffutr.2022.913887.

[3] M. Lüy, E. Çam, F. Ulamiş, I. Uzun, and S. I. Akin, “Initial results of

testing a multilayer laser scanner in a collision avoidance system for

Light Rail Vehicles,” Applied Sciences (Switzerland), vol. 8, no. 4,

Mar. 2018, doi: 10.3390/app8040475.

[4] C. Chen, C. X. Lu, B. Wang, N. Trigoni, and A. Markham, “DynaNet:

Neural Kalman Dynamical Model for Motion Estimation and

Prediction,” IEEE Trans Neural Netw Learn Syst, vol. 32, no. 12, pp.

5479–5491, Aug. 2019, [Online]. Available:

http://arxiv.org/abs/1908.03918

[5] A. L. Escoriza, G. Revach, N. Shlezinger, and R. J. G. van Sloun,

“Data-Driven Kalman-Based Velocity Estimation for Autonomous

Racing,” in 2021 IEEE International Conference on Autonomous

Systems (ICAS), IEEE, Aug. 2021, pp. 1–5. doi:

10.1109/ICAS49788.2021.9551175.

[6] C. Y. Lin, L. J. Kau, and C. Y. Chan, “Bimodal Extended Kalman

Filter-Based Pedestrian Trajectory Prediction,” Sensors, vol. 22, no.

21, Nov. 2022, doi: 10.3390/s22218231.

[7] G. Revach, N. Shlezinger, R. J. G. V. Sloun, and Y. C. Eldar,

“Kalmannet: Data-Driven Kalman Filtering,” in ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing
- Proceedings, Institute of Electrical and Electronics Engineers Inc.,

2021, pp. 3905–3909. doi: 10.1109/ICASSP39728.2021.9413750.

[8] H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen, “Learning to

Predict Vehicle Trajectories with Model-based Planning,” Mar. 2021,

[Online]. Available: http://arxiv.org/abs/2103.04027

[9] V. Lefkopoulos, M. Menner, A. Domahidi, and M. N. Zeilinger,

“Interaction-Aware Motion Prediction for Autonomous Driving: A

Multiple Model Kalman Filtering Scheme,” IEEE Robot Autom Lett,

vol. 6, no. 1, pp. 80–87, Jan. 2021, doi: 10.1109/LRA.2020.3032079.

[10] J. C. Hayward, “Near-Miss Determination Through Use Of A Scale

of Danger,” in 51st Annual Meeting of the Highway Research Board,

Columbia, 1972, pp. 24–34.

[11] R. Van Der Horst and J. Hogema, “Time-To-Collision And Collision

Avoidance Systems,” in 6th ICTCT Workshop Salzburg, 1994.

[Online]. Available:

https://www.researchgate.net/publication/237807114

[12] M. Saffarzadeh, N. Nadimi, S. Naseralavi, and A. R. Mamdoohi, “A

general formulation for time-to-collision safety indicator,”

Proceedings of the Institution of Civil Engineers: Transport, vol. 166,

no. 5, pp. 294–304, Oct. 2013, doi: 10.1680/tran.11.00031.

[13] S. Hirst and R. Graham, “The Format and Presentation of Collision

Warnings,” in Ergonomics and Safety of Intelligent Driver Interfaces,

Y. I. Noy, Ed., CRC Press , 1997.

[14] J. H. Hogema and W. H. Janssen, “Effects of Intelligent Cruise

Control on driving behaviour: a simulator study,” Rotterdam,

Netherlands, 1996.

	I. Introduction
	II. Method
	III. Result and discussion
	A. Testing Scenario
	B. KFCV Stress Test
	C. KFCV Stress Test (Post Filter Fix)
	D. IMM-KF Stress Test
	E. IMM-KF Tuning
	F. IMM-KF Stress Test (Post Tuning)

	IV. Conclusion
	Acknowledgment
	References

