FINAL PROJECT

DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL

By : LUSIVATUL KHASANAH 1431800082

CIVIL ENGINEERING STUDY PROGRAM FACULTY OF ENGINEERING UNIVERSITAS 17 AGUSTUS 1945 SURABAYA

2023

FINAL PROJECT

DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL

Arranged By : <u>LUSIVATUL KHASANAH</u> 1431800082

CIVIL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING UNIVERSITY OF 17 AGUSTUS 1945 SURABAYA 2023

FINAL PROJECT

DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL

Prepared as a Requirement for Obtaining a Bachelor of Engineering Degree (ST). University of 17 Agustus 1945 Surabaya

Arranged By :

LUSIVATUL KHASANAH 1431800082

CIVIL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING UNIVERSITY OF 17 AGUSTUS 1945 SURABAYA 2023

CIVIL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING UNIVERSITY OF 17 AGUSTUS 1945 SURABAYA

FINAL PROJECT APPROVAL SHEET

Name	- :	Lusivatul Khasanah
NBI	:	1431800082
Department	:	Civil Engineering
Faculty	:	Engineering
Tittle	:	DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL

Approved By,

Supervisor

Retno Trimurtiningrum, S.T., M.T. NPP. 20430.14.0626

Knowing,

Dean of Engineering Faculty University of 17 Agustus 1945

Surabaya M.Kes.,IPU NPP. 204 0.90.0197 AKULIAS IV

Head of Civil Engineering Department University of 17 Agustus 1945 Surabaya

Mer Billi

Faradlillah Saves, S.T., M.T. NPP. 20430.15.0674

AFFIDAVIT AUTHENTICITY AND APPROVAL OF THE PUBLICATION FINAL PROJECT

I am the signed below :

Name	: Lusivatul Khasanah
NBI	: 1431800082
Address	: Bhumi Jati Permai Housing Area, Block G1 No. 11, Gresik Districts
Phone	: 0857-4962-2824

States that "Final Project" which the author made to fulfill the graduation statement for the Bachelor (S1) of Civil Engineering - University of Agustus 1945 Surabaya with the title :

"DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL"

Is the work of the author self, and not the result of duplication of other people's work. Furthermore, if at a later date claims from other parties are not the responsibility of the supervisor or program manager but are our own responsibility.

For this reason, the author is willing to accept sanctions in accordance with the laws or regulations that apply in Indonesian.

Thus we make this statement truthfully without coercion from anyone.

UNIVERSITY of 17 AGUSTUS 1945 SURABAYA

SCIENTIFIC WORKS PUBLICATION APPROVAL SHEET FOR ACADEMIC PURPOSES

As an academic civitas of University of 17 Agustus 1945 Surabaya, I am the signed below :

Name	: Lusivatul Khasanah
Faculty	: Engineering
Department	: Civil Engineering
Туре	: Final Project/Thesis/Disertation/Research Report/Practice*

For the sake of scientific development, I agree to give it to Library Department of University 17 Agustus 1945 Surabaya Non exclusive Royalty-Free Right (*Hak Bebas Royalti Non ekslusif*), for my work entitled :

"DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL"

With Non exclusive Royalty-Free Right (*Hak Bebas Royalti Non ekslusif*), Library Department of University 17 Agustus 1945 Surabaya has the right to store, transfer the media or format, process in the form of a database, maintain, publish my scientific work as long as it is listed.

Made in : Surabaya Date : January 5th, 2023

FOREWORD

Praise is always presented to Allah SWT who has bestowed His grace and guidance, so that the author can complete the Final Project with the title "DESIGN OF SIX FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL". This Final Project was prepared to meet one of the conditions to obtain a Bachelor of Civil Engineering degree at the University of 17 Agustus 1945 Surabaya.

This Final Project has been compiled to the maximum and as well as possible. In the preparation of the Report, of course it is inseparable from the encouragement and assistance of various parties, the data obtained and in addition to literature books and journals and knowledge that has been obtained during the lecture. Therefore, of the completion of this Final Project Proposal, the author wants to say a big thank you to:

- 1. Beloved parents (Fatoni and Sugimah), brother (Dian Ari Saputra) and litle sister (Anis Raudhotul Jannah) the author, who have provided moral and material support and prayers.
- 2. Prof. Dr. Mulyanto Nugroho, M.M., CMA., CPA as Rector University of 17 Agustus 1945 Surabaya.
- 3. Dr. Ir. Sajiyo, M.Kes as Dean of Engineering Faculty University of 17 Agustus 1945 Surabaya.
- 4. Faradlillah Saves, ST., MT as Head of Civil Engineering Departement University of 17 Agustus 1945 Surabaya.
- 5. Retno Trimurtiningrum, ST., MT as Supervisor who has provided guidance, directions and instructions until the completion of the Final Task Proposal.
- 6. Indarwanto Hari Susilo as Project Manager of PT. Manajemen Konstruksi Utama which has provided access to data related to the literature study of Gloria Christian Billingual School Building, Grand Pakuwon Surabaya.
- 7. Friends in arm civil engineering batch of 2018 University of 17 Agustus 1945 Surabaya.
- 8. As well as friends and all parties that I cannot mention one by one, and have provided support, motivation, and assistance for the author can complete this Final Project Proposal.

Finally, the author realizes that this Final Project is still far from perfection, therefore the author expects constructive criticism and advice for improvement in the future. The author hopes that this Final Project can provide benefits and inspiration for the readers.

Surabaya, January 5th, 2023

Lusivatul Khasanah NBI : 1431800082

PERENCANAAN GEDUNG 6 LANTAI BERBASIS BUILDING INFORMATION MODELLING (BIM) MENGGUNAKAN AUTODESK REVIT DAN AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESIONAL

Nama Mahasiswa	: Lusivatul Khasanah
NBI	: 1431800082
Dosen Pembimbing	: Retno Trimurtiningrum, ST.,MT

ABSTRAK

Dengan berkembangnya industri Architecture, Engineering and Construction (AEC) banyak sofware yang dikembangkan untuk memenuhi kebutuhan industri konstruksi dengan tujuan untuk meminimalisir human eror dikarenakan pengolahan data secara konvensional. BIM mengubah keseluruhan konsep desain atau perencanaan dengan memperkenalkan proses pengembangan desain dan dokumentasi konstruksi. Building Information Modelling (BIM) merupakan sebuah sistem, manajemen, metode, atau runtutan pengerjaan suatu proyek di bidang Architecture, Engineering, and Construction (AEC).

Tujuan dari penelitian ini adalah untuk mengetahui bagaimana penerapan metode BIM dalam perencanaan sebuah gedung dan menggali keuntungan apa saja yang dapat diperoleh dalam penerapan BIM. Metode dalam penelitian ini dilakukan dengan merencanakan ulang salah satu gedung fasilitas pendidikan yang ada di Kota Surabaya menggunakan *Autodesk Revit* untuk desain serta *Robot Structural Analysys Profesional* untuk analisis struktur. Penelitian ini menghasilkan desain optimum elemen balok dan kolom serta perbandingan terhadap metode BIM dan metode konvensional. Dari hasil analisis dan pembahasan dapat disimpulkan bahwa penggunaan *software* penunjang metode BIM lebih efisien daripada konvensional, BIM juga memfasilitasi proses desain dan konstruksi terintegrasi untuk mencapai hasil yang lebih baik. Namun, penggunaan metode BIM perlu dilakukan pengecekan ulang terhadap SNI dalam mendesain sebuah bangunan.

Kata Kunci : Autodesk Revit, Autodesk Robot Structural Analysis Profesional (RSAP), Building Information Modelling (BIM), Integrasi.

DESIGN OF SIXS FLOORS BUILDING BASED ON BUILDING INFORMATION MODELLING (BIM) USING AUTODESK REVIT AND AUTODESK ROBOT STRUCTURAL ANALYSIS PROFESSIONAL

Student Name	: Lusivatul Khasanah
NBI	: 1431800082
Supervisor	: Retno Trimurtiningrum, ST.,MT

ABSTRACT

With the development of the Architecture, Engineering and Construction (AEC) industry, a lot of software has been developed to meet the needs of the construction industry with the aim of minimizing human error due to conventional data processing. BIM changes the whole concept of design or planning by introducing design development processes and construction documentation. Building Information Modeling (BIM) is a system, management, method, or sequence of work on a project in the field of Architecture, Engineering, and Construction (AEC).

The purpose of this research is to find out how to apply the BIM method in planning a building and explore what advantages can be obtained in implementing BIM. The method in this research was carried out by re-planning one of the existing educational facility buildings in the city of Surabaya using *Autodesk Revit* for design and *Robot Structural Analysys Profesional* for structural analysis. This research resulted in the optimum design of beam and column elements as well as comparisons with the BIM method and conventional methods. From the results of the analysis and discussion it can be concluded that the use of supporting software for the BIM method is more efficient than conventional, BIM also facilitates integrated design and construction processes to achieve better results. However, the use of the BIM method needs to be re-checked against with SNI in designing a building.

Keywords: Autodesk Revit, Autodesk Robot Structural Analysis Professional (RSAP), Building Information Modelling (BIM), Integration.

"Page Intentionally Emptied"

TABLE OF CONTENTS

FINAL PR	OJECT APPROVAL SHEETi
AFFIDAVI FINAL PRO	IT AUTHENTICITY AND APPROVAL OF THE PUBLICATION OJECT
SCIENTIFI PURPOSES	IC WORKS PUBLICATION APPROVAL SHEET FOR ACADEMIC Siii
FOREWOR	۶Div
ABSTRAK	vi
ABSTRAC	Tvii
TABLE OF	F CONTENTSix
LIST OF T	ABLES xiii
LIST OF F	IGURESxv
LIST OF G	RAPHSxxi
LIST OF N	OTATIONSxxii
CHAPTER	I INTRODUCTION1
1.1 B	ackground1
1.2 F	ormulation of the Problem4
1.3 P	urpose4
1.4 S	cope of the Problem4
1.5 B	enefit of Research
CHAPTER	II LITERATURE REVIEW7
2.1 P	revious Research7
2.2 R	einforcement Concrete
2.3 S	tructural Components13
2.3.1	Lower Structur
2.3.2	Upper Structur
2.4 L	oading
2.4.1	Dead Load

2.4.2	Live Load	21
2.4.3	Wind Load (SNI 1727:2020)	28
2.4.4	Earthquake Load	29
2.4.5	Loading Combination (SNI 1726:2019)	40
2.5	Structural Modeling	40
2.5.1	Modelling 2D	41
2.5.2	Modelling 3D	41
2.6	Building Information Modelling (BIM)	42
2.6.1	Modeling/Dimensions in BIM	42
2.6.2	Advantages of BIM	45
2.6.3	Disadvantages of BIM	46
2.7	Autodesk Revit	46
2.8	Autodesk Robot Structural Analysis Profesional (RSAP)	47
2.9	Capacity Design	47
2.10	Special Moment Resistant Frame System (SRPMK)	49
2.11	Structural Element Design	50
2.11.	1 Preliminary Design	50
2.12	Deviation	51
CHAPTE	R III RESEARCH METHODOLOGY	53
3.1	Research Flow Chart	53
3.2	Explanation of Flow Chart	57
3.2.1	Data collection	57
3.2.2	Preliminary Design	60
3.2.3	Load Calculation	61
3.2.4	Modelling Autodesk Revit	61
3.2.5	Import Modeling Into Robot Structural Analysis Professional (R	SAP)
		62
3.2.6	Loading Input in Robot Structural Analysis Professional Modeli	ng
(KSAP)		62

3.2.7	Running Software Robot Structural Analysis Profesional (RSAP)	63
3.2.8	Structure Control	63
3.2.9	Reinforcement Capacity Control (SNI 2847:2019)	64
3.2.10	Consclusion	64
CHAPTE	ER IV ANALYSIS AND DISCUSSION	65
4.1	Data Collection	65
4.2	Preliminary Design	65
4.2.	1 Beam Preliminary Design	65
4.2.2	2 Slab Preliminary Design	68
4.2.3	3 Column Preliminary Design	98
4.3	Loading	101
4.3.	1 Gravity Load Calculations	101
4.3.2	2 Wind Load Calculations	121
4.3.	3 Earthquake Load Calculation	128
4.4	Structural modeling	137
4.4.	1 Autodesk Revit	137
4.4.2	2 Autodesk Robot Structural Analysis Profesional	153
4.5	Mass Modals Participation Check SNI 1726:2019	179
4.6	Dynamic Shear Control (Base Shear) SNI 1726:2019	180
4.7	Story Drift Analysis SNI 1726:2019	183
4.8	Check the Effect of P-Delta (P- Δ)	188
4.9	Beam Structural Element Reinforcement Design	194
4.9.2	2 Beam X Direction (BI1-291)	197
3.9.2	2 Beam Y Direction (BI2-339)	232
4.9.	3 Column Structure Element Design	267
CHAPTE	ER V	299
CLOSIN	G	299
5.1	Conclusion	299

Suggestion	302
OGRAPHY	303
ACHMENT	305

LIST OF TABLES

Table 2 1 Self Weight of Building Materials	19
Table 2. 2 Live Load on Building Floor	21
Table 2. 3 Live Load Reduction Coefficient	
Table 2, 4 Minimum uniformly distributed live load. Lo and minimum concern	trated
live load	24
Table 2. 5 Wind Important Factor (Iw)	28
Table 2. 6 Wind Direction Factor (K_d)	29
Table 2. 7 Building and Non-building Risk Category for Earthquake Load	32
Table 2. 8 Table 2. 9 Earthquake Priority Factor	33
Table 2. 10 KDS Based on Acceleration Response Parameters in Short Period	34
Table 2. 11 Seismic Design Categories Based on Acceleration Response Paran	neters
in 1 Second Period	34
Table 2. 12 Earthquake Risk Level	34
Table 2. 13 Factors R, Ω , and Cd for Advanced Earthquake Force Resistant	35
Table 2. 14 Site Classification	35
Table 2. 15 Seismic Response Coefficient	38
Table 2. 16 Seismic Response Coefficient (Continued)	39
Table 2. 17 Interfloor Permit Deviance	52
Table 4. 1 Beam Preliminary Design Result	68
Table 4. 2 The Result of Slab Preliminary Design	98
Table 4. 3 Dead Load on the Building	99
Table 4. 4 Dead Load Calculations	99
Table 4. 5 Live Load Calculations	100
Table 4. 6 Dead Load On The Building	102
Table 4. 7 Minimum evenly distributed live load, L ₀ and minimum centralized	live
load	102
Table 4. 8 Total of Slab, Beam and Column in the 1 st Floor	103
Table 4. 9 Dead Load Calculations in the 1st Floor	104
Table 4. 10 Total of Slab, Beam and Column in the 2 nd Floor	106
Table 4. 11 Dead Load Calculations in the 2 nd Floor	107
Table 4. 12 Total of Slab, Beam and Column in the 3 rd Floor	109
Table 4. 13 Dead Load Calculations in the 3 rd Floor	110
Table 4. 14 Total of Slab, Beam and Column in the 4 th Floor	112
Table 4. 15 Dead Load Calculations in the 4 th Floor	113
Table 4. 16 Total of Slab, Beam and Column in the 5 th Floor	115
Table 4. 17 Dead Load Calculations in the 5 th Floor	116
Table 4. 18 Total of Slab, Beam and Column in the 6 th Floor	118

Table 4. 19 Dead Load Calculations in the 6 th Floor	.119
Table 4. 20 Load Gravity in the Each Floor	.120
Table 4. 21 Wind Importance Factor, Iw.	.122
Table 4. 22 Basic Wind Speed	.122
Table 4. 23 Wind Direction Factor, Kd	.123
Table 4. 24 Kz Calculations	.124
Table 4. 25 Closed Classification	.125
Table 4. 26 Wall External Pressure Coefficient (Cp)	.125
Table 4. 27 External Pressure Coefficient	.127
Table 4. 28 Processed SPT Data	.128
Table 4. 29 Building Structure Risk Category	.129
Table 4. 30 Earthquake Priority Factor	.129
Table 4. 31 Site Classification	.129
Table 4. 32 Fa Site Coefficients	.131
Table 4. 33 Fv Site Coefficients	.132
Table 4. 34 Seismic Design Category Based on Acceleration Response Parameter	ers
in Short Periods	.133
Table 4. 35 Seismic Design Category Based on Acceleration Response Parameter	ers
in 1.0 Second Period	.134
Table 4. 36 Earthquake Risk Level	.134
Table 4. 37 R, Cd and Ω_0 factor for seismic force resisting systems	.136
Table 4. 38 Super dead Load	.167
Table 4. 39 Live Load	.167
Table 4. 40 Mass Modals Participation	.180
Table 4. 41 Permit Story Drift, $\Delta_a^{a,b}$.183
Table 4. 42 Story Drift Result	.185
Table 4. 43 Recapitulation Result of the Story Drift Calculation X Direction	.186
Table 4. 44 Recapitulation Result of the Story Drift Calculation Y Direction	.188
Table 4. 45 Vertical Design Load	.189
Table 4. 46 Seismic Shear Force	.190
Table 4. 47 Recapitulation of P-Delta Calculation Results (P- Δ) X Direction	.191
Table 4. 48 Recapitulation of P-Delta Calculation Results (P- Δ) Y Direction	.193
Table 4. 49 Axial Force and Moment C1-22 1st Floor	.271
Table 4. 50 Axial Force and Moment C1-22 2nd Floor	.271
Table 4. 51 Output Nominal Moment Column SP Column C1-22 1st Floor	.282

LIST OF FIGURES

Figure 2. 1 Wind Important Factor (Iw)	31
Figure 2. 2 Modeling in BIM	43
Figure 2. 3 Building Structure Plastic Joints	48
Figure 2. 4 Local and Global Collapse Mechanisme	49
Figure 2. 5 Inter-floor drift	51
Figure 3. 1 Flowchart	53
Figure 3. 2 Flowchart	54
Figure 3. 3 Flowchart	55
Figure 3. 4 Flowchart	56
Figure 3. 5 Project Location Map	57
Figure 3. 6 Front Look	57
Figure 3. 7 Floor Plan 1st Floor	58
Figure 3. 8 Floor Plan 2 nd Floor	58
Figure 3. 9 Floor Plan 3 rd Floor	59
Figure 3. 10 Floor Plan 4th Floor	59
Figure 3. 11 Floor Plan 5 th Floor	59
Figure 3. 12 Floor Plan 6 th Floor	60
Figure 4. 1 Beam Preliminary Design	66
Figure 4. 2 Type 1 Floor Slab	69
Figure 4. 3 Section I-I	69
Figure 4. 4 Section II-II	69
Figure 4. 5 Section III-III	70
Figure 4. 6 Section IV-IV	70
Figure 4. 7 Type 2 Floor Slab	75
Figure 4. 8 Section I-I	75
Figure 4. 9 Section II-II	75
Figure 4. 10 Type 3 Floor Slab	78
Figure 4. 11 Section I-I	79
Figure 4. 12 Section II-II	79
Figure 4. 13 Section III-III	79
Figure 4. 14 Type 4 Floor Slab	82
Figure 4. 15 Section I-I	83
Figure 4. 16 Section II-II	83
Figure 4. 17 Section III-III	83
Figure 4. 18 Type 5 Floor Slab	86
Figure 4. 19 Section I-I	86
Figure 4. 20 Section II-II	87

Figure 4. 21 Type 6 Floor Slab	90
Figure 4. 22 Section I-I	90
Figure 4. 23 Section II-II	90
Figure 4. 24 Type 7 Floor Slab	93
Figure 4. 25 Section I-I	94
Figure 4. 26 Section II-II	94
Figure 4. 27 Section III-III	94
Figure 4. 28 Area of 1st Floor Slab 1	103
Figure 4. 29 Area of 2 nd Floor Slab	106
Figure 4. 30 Area of 3 rd Floor Slab	109
Figure 4. 31 Area of 4th Floor Slab	112
Figure 4. 32 Area of 5 th Floor Slab	115
Figure 4. 33 Area of 6 th Floor Slab	118
Figure 4. 34 Gravity Load from RSAP	121
Figure 4. 35 Spectral Values Design	130
Figure 4. 36 Fa Interpolation	131
Figure 4. 37 Fv Interpolation	132
Figure 4. 38 Initial Figure in Autodesk Revit	137
Figure 4. 39 Create New File Project	138
Figure 4. 40 Setting Revit Unit	138
Figure 4. 41 Create the Grid by Structure Menu	139
Figure 4. 42 Create the Grid	139
Figure 4. 43 Creating Dimensions by Annonate Menu	139
Figure 4. 44 Dimensions	140
Figure 4. 45 Building Elevation	140
Figure 4. 46 Create Level by Structure Menu	140
Figure 4. 47 Desain Level	141
Figure 4. 48 Create Column	141
Figure 4. 49 Column Load Family	142
Figure 4. 50 Determine the Type of the Column	142
Figure 4. 51 Column Type Setting	142
Figure 4. 52 Column Rename	143
Figure 4. 53 Dimension Column Setting	143
Figure 4. 54 Duplicate the Type of the Column	144
Figure 4. 55 Place Structural Column Setting	144
Figure 4. 56 At Grids Column	145
Figure 4. 57 Column	145
Figure 4. 58 Create Beam	145

Figure 4. 59 Beam Load Family	146
Figure 4. 60 Determine the Type of the Beam	146
Figure 4. 61 Beam Type Setting	147
Figure 4. 62 Beam Rename	147
Figure 4. 63 Dimensions Beam Setting	148
Figure 4. 64 Duplicate the Type of the Beam	148
Figure 4. 65 On Grids Beam	149
Figure 4. 66 Beam	149
Figure 4. 67 Create Slab	149
Figure 4. 68 Slab Edit Type	150
Figure 4. 69 Slab Rename	150
Figure 4. 70 Slab Thickness Setting	151
Figure 4. 71 Duplicate the Type of the Slab	151
Figure 4. 72 Slab Boundary Line	151
Figure 4. 73 Slab	152
Figure 4. 74 Export Project File From Revit to Robot Sructural Analysis Profesi	onal
	152
Figure 4. 75 Send Model From Revit to Robot Sructural Analysis Profesional	153
Figure 4. 76 Initial View Robot Sructural Analysis Profesional	153
Figure 4. 77 Unit Setting in RSAP	154
Figure 4. 78 Unit and Format Setting	155
Figure 4. 79 Dimensions Setting	155
Figure 4. 80 Force Setting	156
Figure 4. 81 Other Setting	156
Figure 4. 82 Unit Edition Setting	157
Figure 4. 83 Material Setting	157
Figure 4. 84 Databases Setting	158
Figure 4. 85 Steel and Timber Section Setting	158
Figure 4. 86 Standart Loads Setting	159
Figure 4. 87 Building Soil Setting	159
Figure 4. 88 Bolts Setting	160
Figure 4. 89 Anchor Bolts Setting	160
Figure 4. 90 Reinforcing Bars Setting	161
Figure 4. 91 Wire Fabrics Setting	161
Figure 4. 92 Design Codes Setting	162
Figure 4. 93 Loads Setting	162
Figure 4. 94 Structure Analysis Setting	163
Figure 4. 95 Modal Anaysis Setting	163

Figure 4. 96 Non-Linier Analysis Setting	.164
Figure 4. 97 Seismic Analysis Setting	.164
Figure 4. 98 Work Parameters Setting	.164
Figure 4. 99 Meshing Setting	.165
Figure 4. 100 Load Types	.165
Figure 4. 101 Input Load Case	.166
Figure 4. 102 Enable Load Cases	.166
Figure 4. 103 Gravity Load Definition	.167
Figure 4. 104 Claddings	.168
Figure 4. 105 Create Claddings	.168
Figure 4. 106 Claddings Result	.169
Figure 4. 107 Input Maximum Speed of Wind Load	.169
Figure 4. 108 Wind Load Simulations	.169
Figure 4. 109 Wind Simulation Completed	.170
Figure 4. 110 Load Case of Wind Load	.170
Figure 4. 111 Analysis Type	.171
Figure 4. 112 Modal New Case Definition	.171
Figure 4. 113 New Case Definition Static Earthquake Load	.171
Figure 4. 114 Static Earthquake Load Seismic Analysis	.172
Figure 4. 115 Static Earthquake Load Parameters	.172
Figure 4. 116 Range of Seismic Load Setting	.173
Figure 4. 117 Static Earthquake Load Analysis Type	.173
Figure 4. 118 Dynamic Earthquake Load New Case Definition	.174
Figure 4. 119 Dynamic Earthquake Load Parameters	.174
Figure 4. 120 Base Shear Setting	.175
Figure 4. 121 Dynamic Earthquake Load Analysis Type	.175
Figure 4. 122 Create Load Combinations	.176
Figure 4. 123 Combination Definition – Load Combinations	.177
Figure 4. 124 Input Load Combinations	.177
Figure 4. 125 Calculations	.178
Figure 4. 126 Running Process	.178
Figure 4. 127 Modal Analysis	.179
Figure 4. 128 Table Result of Mass Modals Participation	.179
Figure 4. 129 Calculation Notes	.181
Figure 4. 130 Dynamic Base Shear X Direction	.181
Figure 4. 131 Dynamic Base Shear Y Direction	.181
Figure 4. 132 Static Base Shear X Direction	.182
Figure 4. 133 Static Base Shear Y Direction	.182

Figure 4. 134	Stories for Drift	.184
Figure 4. 135	Story Drift Output	184
Figure 4. 136	Vertical Design Load	189
Figure 4. 137	Seismic Shear Force	190
Figure 4. 138	Code Parameters for Beam	.194
Figure 4. 139	Member Type Definition for Beam	194
Figure 4. 140	Calculations Parameters for Beam	195
Figure 4. 141	General Parameter Set for Beam	195
Figure 4. 142	Longitudinal Reinforcement Parameter Set for Beam	196
Figure 4. 143	Transversal Reinforcement Parameter Set for Beam	196
Figure 4. 144	Beam Reinforcement	196
Figure 4. 145	Output of Support Reinforcement BI1-291	201
Figure 4. 146	Design of Beam Support Reinforcement BI1-291	.204
Figure 4. 147	Positive (+) Moment Analysis	.207
Figure 4. 148	Negative (-) Moment Analysis	.209
Figure 4. 149	Span Reinforcement Output BI1-291	.213
Figure 4. 150	Beam Field Reinforcement Design BI1-291	.215
Figure 4. 151	Ultimate Shear Force BI1-291	.225
Figure 4. 152	Design of Transverse Beam Reinforcement BI1-291	.230
Figure 4. 153	Spacing Transverse Beam Reinforcement BI1-291	.231
Figure 4. 154	Support Reinforcement Output BI2-339	.236
Figure 4. 155	Design of Beam Support Reinforcement BI2-339	.239
Figure 4. 156	Positive (+) Moment Analysis	.242
Figure 4. 157	Negative (-) Moment Analysis	.244
Figure 4. 158	Span Reinforcement Output BI2-339	.248
Figure 4. 159	Beam Field Reinforcement Design BI2-339	.250
Figure 4. 160	Ultimate Shear Force BI2-339	.260
Figure 4. 161	Design of Transverse Beam Reinforcement BI1-339	.265
Figure 4. 162	Spacing Transverse Beam Reinforcement BI2-339	266
Figure 4. 163	Code Parameters for Column	.267
Figure 4. 164	Member Type Definition for Column	.267
Figure 4. 165	Calculations Parameters for Column	.268
Figure 4. 166	General Parameter Set for Column	268
Figure 4. 167	Longitudinal Reinforcement Parameter Set for Column	.269
Figure 4. 168	Transversal Reinforcement Parameter Set for Column	.269
Figure 4. 169	Column Reinforcement	.269
Figure 4. 170	Input General Information	.272
Figure 4. 171	Input Material Properties	.272

Figure 4. 172 Cross Section Column Input	273
Figure 4. 173 Input reinforcement to be used	
Figure 4. 174 Load Input on Column	274
Figure 4. 175 Solve Execute	274
Figure 4. 176 C1-22 SP Column Reinforcement Ratio Results	
Figure 4. 177 C1-22 Column PM Diagrams from SP Column	275
Figure 4. 178 Reinforcement Ratio Results C1-22 RSAP	
Figure 4. 179 Longitudinal Column Reinforcement C1-22	
Figure 4. 180 C1-22 Column PM Diagrams from RSAP	
Figure 4. 181 Column Nominal Moment RSAP Output C1-22	
Figure 4. 182 Column Nominal Moment RSAP Output C2-127	
Figure 4. 183 Column Transverse Reinforcement Design C1-22	
Figure 4. 184 Column Spacing Transverse Reinforcement C1-22	

LIST OF GRAPHS

Graph 2. 1 Spektrum Respons Design	
Graph 4. 1 Dynamic Acceleration X Direction	
Graph 4. 2 Dynamic Acceleration Y Direction	
Graph 4. 3 Story Drift X Direction	
Graph 4. 4 Story Drift Y Direction	
Graph 4. 5 P-Delta (P-Δ) X Direction	
Graph 4. 6 P-Delta (P-Δ) Y Direction	
-	

LIST OF NOTATIONS

А	= The area of the structure (m^2)
А	= Whitney tension beam height
A's	= Compression reinforcement area (mm^2)
Ach	= Net area of column shear reinforcement (mm^2)
Ag	= The cross-sectional area of the beam
As	= Tensile reinforcement area (mm^2)
Ash	= Area of column shear reinforcement
b	= Width dimensions of beams or columns (m)
\mathbf{b}_{w}	= width of shear wall segment body
c	= Neutral line height
Cc	= Concrete pressure
Cd	= Deflection magnification factor
Cs	= Seismic response coefficient
Cu	= The coefficient for the upper bound on the calculated period
d	= The distance from the extreme compression fiber to the center of
	tension reinforcement (mm)
d'	= The distance from the extreme compression fiber to the center of the
	compression reinforcement (mm)
DL	= Dead load (kg/m ²)
Dl	= Main reinforcement diameter (mm)
dt	= Maximum displacement value
Eh	= Horizontal seismic loads
Es	= Elastic modulus
Ev	= Vertical seismic loads
F'c	= Concrete compressive strength (Mpa)
Fa	= Site Coefficient based on Sa value
Fv	= Site Coefficient based on S1 grade
fy	= Melt stress
g	= Gravity acceleration (9.8 m/s^2)
h	= Height dimensions of beams or columns (m)
hsx	= Height between levels (mm)
hx	= Height of each floor
Ie	= Earthquake Priority Factor
KDG	= Earthquake design category
LL	= live load (kg/m ²)
Ln	= The net length of the beam measured from the face of the column

Mn	= Nominal moment
Mnb	= The total number of moments that occur in the beam
Mnc	= The total number of moments that occur in the column
Mpr-	= The negative moment capacity of the beam due to alternating earthquakes is wrong one beam support (1.25 fy tensile steel grade)
Mpr+	= The positive moment capacity of the beam due to alternating earthquakes is wrong one beam support (1.25 fy tensile steel grade)
Mu	= Ultimate moment of beam or column
Ν	= Number of levels
Pu	= Ultimate axial force
Px	= Total vertical design load on and above the story
$Q_{\rm E}$	= Earthquake load
Qu	= The factored load is a combination of dead and live loads
R	= Response modification coefficient
Rn	= Coefficient of resistance value
S	= Bar spacing (mm)
\mathbf{S}_1	= The acceleration of the bedrock over a period of 1 second
Sa	= Response spectra acceleration
\mathbf{S}_{D1}	= Determine seismic design categories based on response parameters
a	acceleration over a period of 1 second
S_{DS}	= Determine seismic design categories based on response parameters acceleration over short periods
SF	= scale factor
S_{M1}	= Parameter of the MCE spectral response acceleration in the 1 second period adjusted for the effect of site class
S_{MS}	= Parameter of the MCE spectral response acceleration in the short period adjusted for the effect of site class
Ss	= Acceleration of bedrock over short periods
Т	= Period of fundamental vibration of the structure
T_0	= Period at 0 seconds
Та	= Approach fundamental period
TL	= long period
Ts	= The distance between the stirrup reinforcement and the base of the beam
TS	= Period in s seconds
V	= Seismic base shear force (kN)

= The ultimate shear force of the beam used to design the reinforcement
stirrups on SRPMK beams (kN)
= Nominal shear force (kN)
= Shear reinforcement style
= The basic shear force of the analysis of variance
= Ultimate shear force obtained from the software (N)
= Design seismic shear force at level x
= The design value of the base shear due to seismic x
= The design value of the seismic-induced base shear y
= Weight (kg)
= Story Displacemet
= Permit level drift between floors
= Transfer targets
= Improved center of mass deflection
= Deflection at the indicated location (mm)
= Ratio of shear requirement to shear capacity for grade x and x-1
= Stability coefficient
= Diameter of stirrup reinforcement (mm)
= Reundancy factor
= More powerful factor
= Reduction factor (based on SNI)